Advertisement

Strong Degrees in Single Valued Neutrosophic Graphs

  • Said Broumi
  • Florentin Smarandache
  • Assia Bakali
  • Seema Mehra
  • Mohamed Talea
  • Manjeet Singh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 886)

Abstract

The concept of Single Valued Neutrosophic Graphs (SVNGs) generalizes fuzzy graphs and intuitionistic fuzzy graphs. The purpose of this research paper is to define different types of strong degrees in SVNGs and introduce novel concepts, such as the vertex membership of truth-values, vertex membership of indeterminate-values and vertex membership of false-values, which are sequence of SVNG with proof and numerical illustrations.

Keywords

Single valued neutrosophic graph (SVNG) Neutrosophic set Sequence Strong degree 

Notes

Acknowledgment

The authors would like to thank anonymous reviewers for the constructive suggestions that improved the quality of the paper.

References

  1. 1.
    Smarandache, F.: Neutrosophy. Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, Ann Arbor, 105 p. (1998)Google Scholar
  2. 2.
    Atanassov, K.: Intuitionistic fuzzy sets: theory and applications, Physica, New York (1999)CrossRefGoogle Scholar
  3. 3.
    Smarandache, F.: A Unifying Field in Logic. Neutrosophy: Neutrosophic Probability, Set, Logic, 4th edn. American Research Press, Rehoboth (2005)zbMATHGoogle Scholar
  4. 4.
    Zadeh, L.: Fuzzy logic and approximate reasoning. Synthese 30(3–4), 407–428 (1975)CrossRefGoogle Scholar
  5. 5.
    Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  6. 6.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefGoogle Scholar
  7. 7.
    Wang, H., Smarandache, F., Zhang, Y., Sunderraman, R.: Single valued neutrosophic sets. Multispace Multisrtuct. 4, 410–413 (2010)zbMATHGoogle Scholar
  8. 8.
  9. 9.
    Broumi, S., Talea, M., Bakali, A., Smarandache, F.: Single valued neutrosophic graphs. J. New Theor. 10, 86–101 (2016)Google Scholar
  10. 10.
    Broumi, S., Talea, M., Bakali, A., Smarandache, F.: On bipolar single valued neutrosophic graphs. J. New Theor. 11, 84–102 (2016)Google Scholar
  11. 11.
    Broumi, S., Bakali, A., Talea, M., Smarandache, F.: Isolated single valued neutrosophic graphs. Neutrosophic Sets Syst. 11, 74–78 (2016)Google Scholar
  12. 12.
    Broumi, S., Smarandache, F., Talea, M., Bakali, A.: An introduction to bipolar single valued neutrosophic graph theory. Appl. Mech. Mater. 841, 184–191 (2016)CrossRefGoogle Scholar
  13. 13.
    Broumi, S., Smarandache, F., Talea, M., Bakali, A.: Decision-making method based on the interval valued neutrosophic graph. In: Future Technologie, pp. 44–50. IEEE (2016)Google Scholar
  14. 14.
    Broumi, S., Talea, M., Smarandache, F., Bakali, A.: Single valued neutrosophic graphs: degree, order and size. In: IEEE World Congress on Computational Intelligence, pp. 2444–2451 (2016)Google Scholar
  15. 15.
    Broumi, S., Bakali, A., Talea, M., Smarandache, F.: Shortest path problem under trapezoidal neutrosophic information. In: Computing Conference 2017, 18–20 July 2017, pp. 142–148 (2017)Google Scholar
  16. 16.
    Broumi, S., Bakali, A., Talea, M., Smarandache, F., Vladareanu, L.: Computation of shortest path problem in a network with SV-trapezoidal neutrosophic numbers. In: Proceedings of the 2016 International Conference on Advanced Mechatronic Systems, Melbourne, pp. 417–422 (2016)Google Scholar
  17. 17.
    Broumi, S., Bakali, A., Talea, M., Smarandache, F., Vladareanu, L.: Applying Dijkstra algorithm for solving neutrosophic shortest path problem. In: Proceedings of the 2016 International Conference on Advanced Mechatronic Systems, Melbourne, pp. 412–416 (2016)Google Scholar
  18. 18.
    Broumi, S., Talea, M., Bakali, A., Smarandache, F.: Interval valued interval valued neutrosophic graphs. In: Critical Review, XII, pp. 5–33 (2016)Google Scholar
  19. 19.
    Broumi, S., Bakali, A., Mohamed, T., Smarandache, F., Vladareanu, L.: Shortest path problem under triangular fuzzy neutrosophic information. In: 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), pp. 169–174 (2016)Google Scholar
  20. 20.
    Broumi, S., Smarandache, F., Talea, M., Bakali, A.: Operations on interval valued neutrosophic graphs. In: Smarandache, F., SurpatiPramanik (eds.) New Trends in Neutrosophic Theory and Applications, pp. 231–254 (2016). ISBN 978-1-59973-498-9Google Scholar
  21. 21.
    Broumi, S., Bakali, A., Talea, M., Smarandache, F., Ali, M.: Shortest path problem under bipolar neutrosphic setting. Appl. Mech. Mater. 859, 59–66 (2016)CrossRefGoogle Scholar
  22. 22.
    Ashraf, S., Naz, S., Rashmanlou, H., Malik, M.A.: Regularity of graphs in single valued neutrosophic environment. J. Intell. Fuzzy Syst. 33(1), 529–542 (2017)CrossRefGoogle Scholar
  23. 23.
    Naz, S., Rashmanlou, H., Malik, M.A.: Operations on single valued neutrosophic graphs with application. J. Intell. & Fuzzy Syst. 32(3), 2137–2151 (2017)CrossRefGoogle Scholar
  24. 24.
    Mehra, S., Singh, M.: Single valued neutrosophic signed graphs. Int. J. Comput. Appl. 157(9), 32–34 (2017)CrossRefGoogle Scholar
  25. 25.
    Hamidi, M., Bourumand Saeid, A.: Accessible single valued neutrosophic graphs. J. Appl. Math. Comput. 21 (2017)Google Scholar
  26. 26.
    Akram, M., Shahzadi, G.: Operations on single-valued neutrosophic graphs. J. Uncertain Syst. 11, 1–26 (2017)zbMATHGoogle Scholar
  27. 27.
    Akram, M.: Single-valued neutrosophic planar graphs. Int. J. Algebra Stat. 5(2), 157–167 (2016)CrossRefGoogle Scholar
  28. 28.
    Akram, M., Shahzadi, S.: Neutrosophic soft graphs with application. J. Intell. Fuzzy Syst. 1–18 (2016).  https://doi.org/10.3233/jifs-16090CrossRefGoogle Scholar
  29. 29.
    Karunambigai, M.G., Buvaneswari, R.: Degrees in intuitionistic fuzzy graphs. Ann. Fuzzy Math. Inform. (2016)Google Scholar
  30. 30.
    Hassan, A., Malik, M.A., Broumi, S., Bakali, A., Talea, M., Smarandache, F.: Special types of bipolar single valued neutrosophic graphs. Ann. Fuzzy Math. Inform. 14(1), 55–73 (2017)Google Scholar
  31. 31.
    Mullai, M., Broumi, S., Stephen, A.: Shortest path problem by minimal spanning tree algorithm using bipolar neutrosophic numbers. Int. J. Math. Trends Technol. 46(2), 80–87 (2017)CrossRefGoogle Scholar
  32. 32.
    Broumi, S., Bakali, A., Talea, M., Smarandache, F., Kishore Kumar, P.K.: Shortest path problem on single valued neutrosophic graphs. In: International Symposium on Networks, Computers and Communications (ISNCC) (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Said Broumi
    • 1
  • Florentin Smarandache
    • 2
  • Assia Bakali
    • 3
  • Seema Mehra
    • 4
  • Mohamed Talea
    • 1
  • Manjeet Singh
    • 5
  1. 1.Laboratory of Information Processing, Faculty of Science Ben M’SikUniversity Hassan IISidi Othman, CasablancaMorocco
  2. 2.Department of MathematicsUniversity of New MexicoGallupUSA
  3. 3.Ecole Royale NavaleCasablancaMorocco
  4. 4.Department of MathematicsMaharshi Dayanand UniversityRohtakIndia
  5. 5.Department of MathematicsK.L.P. CollegeRewari, RohtakIndia

Personalised recommendations