Advertisement

Robustness of Intelligent Vehicular Rerouting Towards Non-ideal Communication Delay

  • Christian Backfrieder
  • Manuel Lindorfer
  • Christoph F. Mecklenbräuker
  • Gerald Ostermayer
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 886)

Abstract

One of the main goals of Intelligent Transport Systems (ITSs) is to optimize traffic flow for the sake of saving fuel, decreasing travel time and/or reducing congestion. In order to achieve this goal, most of the numerous approaches from literature require some kind of information exchange between vehicles and the environment. Vehicles on the one hand need to provide data containing predicates, such as current velocity, position or route destination. On the other hand, a router needs a functional communication infrastructure to contribute route guidance to vehicles which are affected by traffic jams. However, variable delay or complete message loss can influence the rerouting performance significantly, since either route advices could fail to reach their recipient, or the supposed knowledge of the road conditions could be outdated. The delay requirements of various routers may be divergent, and therefore we propose two delay models which are independent of the underlying communication standard. Furthermore, this paper evaluates the existing PCMA* routing algorithm concerning its performance with varying delays and message loss probabilities by applying the introduced delay models in microscopic traffic simulations. We define constraints of both the delay and message loss probability which are required to achieve certain improvements ensuing from intelligent rerouting. The results further reveal a high robustness of the algorithm with regard to delays and message loss probabilities, which expresses itself by similarly low achieved average vehicle travel times for a large amount of the investigated simulation setups.

Keywords

Vehicular communication Vehicle-to-everything (V2X) Communication delay model Vehicle routing Traffic simulation 

Notes

Acknowledgment

This project has been co-financed by the European Union using financial means of the European Regional Development Fund (EFRE). Further information to IWB/EFRE is available at www.efre.gv.at.

References

  1. 1.
    Liang, Z., Wakahara, Y.: Real-time urban traffic amount prediction models for dynamic route guidance systems. EURASIP J. Wirel. Commun. Netw. 2014(1), 85 (2014)CrossRefGoogle Scholar
  2. 2.
    Li, Y., Ren, W., Jin, D., Hui, P., Zeng, L., Wu, D.: Potential predictability of vehicular staying time for large-scale urban environment. IEEE Trans. Veh. Technol. 63(1), 322–333 (2014)CrossRefGoogle Scholar
  3. 3.
    Gramaglia, M., Calderon, M., Bernardos, C.: ABEONA monitored traffic: VANET-assisted cooperative traffic congestion forecasting. IEEE Veh. Technol. Mag. 9(2), 50–57 (2014)CrossRefGoogle Scholar
  4. 4.
    Chan, K.Y., Dillon, T., Chang, E.: An intelligent particle swarm optimization for short-term traffic flow forecasting using on-road sensor systems. IEEE Trans. Ind. Electron. 60(10), 4714–4725 (2013)CrossRefGoogle Scholar
  5. 5.
    Daraghmi, Y.-A., Yi, C.-W., Chiang, T.-C.: Negative binomial additive models for short-term traffic flow forecasting in urban areas. IEEE Trans. Intell. Transp. Syst. 15(2), 784–793 (2014)CrossRefGoogle Scholar
  6. 6.
    Nafi, N., Khan, R., Khan, J., Gregory, M.: A predictive road traffic management system based on vehicular ad-hoc network. In: 2014 Australasian Telecommunication Networks and Applications Conference (ATNAC), pp. 135–140, November 2014Google Scholar
  7. 7.
    Cao, Z., Jiang, S., Zhang, J., Guo, H.: A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion. IEEE Trans. Intell. Transp. Syst. 18(7), 1958–1973 (2016)CrossRefGoogle Scholar
  8. 8.
    Kim, K., Kwon, M., Park, J., Eun, Y.: Dynamic vehicular route guidance using traffic prediction information. Mob. Inf. Syst. 2016, e3727865 (2016)Google Scholar
  9. 9.
    3GPP: Release 14, June 2017Google Scholar
  10. 10.
    Bilstrup, K.: A survey regarding wireless communication standards intended for a high-speed vehicle environment. Halmstad University (2007)Google Scholar
  11. 11.
    Zhang, B., Ma, M., Liu, C., Shu, Y.: Delay guaranteed MDP scheduling scheme for HCCA based on 802.11p protocol in V2R environments. Int. J. Commun. Syst. 30, e3307 (2017)CrossRefGoogle Scholar
  12. 12.
    Zafar, B.A., Ouni, S., Boulila, N., Saidane, L.: Communication delay guarantee for IEEE 802.11 p/wave Vehicle networks with RSU control. In: 2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC), pp. 1–7. IEEE (2016)Google Scholar
  13. 13.
    Madueño, G.C., Pratas, N.K., Stefanović, E., Popovski, P.: Massive M2M access with reliability guarantees in LTE systems. In: 2015 IEEE International Conference on Communications (ICC), pp. 2997–3002. IEEE (2015)Google Scholar
  14. 14.
    Chen, X., Zhang, Z., Yuen, C.: Resource allocation for cost minimization in limited feedback MU-MIMO systems with delay guarantee. IEEE Syst. J. 9(4), 1229–1236 (2015)CrossRefGoogle Scholar
  15. 15.
    Hameed Mir, Z., Filali, F.: LTE and IEEE 802.11p for vehicular networking: a performance evaluation. EURASIP J. Wirel. Commun. Netw. 2014(1), 89 (2014). http://jwcn.eurasipjournals.com/content/2014/1/89
  16. 16.
    Backfrieder, C., Ostermayer, G., Mecklenbräuker, C.F.: Increased Traffic flow through node-based bottleneck prediction and V2X communication. IEEE Trans. Intell. Transp. Syst. 18(2), 349–363 (2017)CrossRefGoogle Scholar
  17. 17.
    Barth, M., Boriboonsomsin, K., Vu, A.: Environmentally-friendly navigation. In: 2007 IEEE Intelligent Transportation Systems Conference, ITSC 2007, pp. 684–689. IEEE (2007)Google Scholar
  18. 18.
    Videtich, M.: Receiving traffic update information and reroute information in a mobile vehicle. US Patent 7,062,379, 13 June 2006. https://www.google.com/patents/US7062379
  19. 19.
    Blokpoel, R., Vreeswijk, J., Leistner, D.: Micro-routing using accurate traffic predictions. IET Intell. Transp. Syst. 6(4), 380–387 (2012)CrossRefGoogle Scholar
  20. 20.
    Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)CrossRefGoogle Scholar
  21. 21.
    Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle-dispatch problem. Oper. Res. 22(2), 340–349 (1974)CrossRefGoogle Scholar
  22. 22.
    Abdulkader, M.M., Gajpal, Y., ElMekkawy, T.Y.: Hybridized ant colony algorithm for the multi compartment vehicle routing problem. Appl. Soft Comput. 37, 196–203 (2015)CrossRefGoogle Scholar
  23. 23.
    Reed, M., Yiannakou, A., Evering, R.: An ant colony algorithm for the multi-compartment vehicle routing problem. Appl. Soft Comput. 15, 169–176 (2014)CrossRefGoogle Scholar
  24. 24.
    Belhaiza, S., Hansen, P., Laporte, G.: A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Comput. Oper. Res. 52, 269–281 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.-G.: Multi-swarm optimization for dynamic combinatorial problems: a case study on dynamic vehicle routing problem. In: ANTS Conference, vol. 6234, pp. 227–238. Springer (2010)Google Scholar
  26. 26.
    Kaiwartya, O., Kumar, S., Lobiyal, D.K., Tiwari, P.K., Abdullah, A.H., Hassan, A.N.: Multiobjective dynamic vehicle routing problem and time seed based solution using particle swarm optimization. J. Sens. 2015, 1–14 (2015)CrossRefGoogle Scholar
  27. 27.
    Chen, A.-L., Yang, G.-K., Wu, Z.-M.: Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. J. Zhejiang Univ. Sci. A 7(4), 607–614 (2006)CrossRefGoogle Scholar
  28. 28.
    Araniti, G., Campolo, C., Condoluci, M., Iera, A., Molinaro, A.: LTE for vehicular networking: a survey. IEEE Commun. Mag. 51(5), 148–157 (2013)CrossRefGoogle Scholar
  29. 29.
    Bilstrup, K., Uhlemann, E., Ström, E., Bilstrup, U.: On the ability of the 802.11 p MAC method and STDMA to support real-time vehicle-to-vehicle communication. EURASIP J. Wirel. Commun. Netw. 2009(1), 902414 (2009). http://link.springer.com/article/10.1155/2009/902414CrossRefGoogle Scholar
  30. 30.
    Bilstrup, K., Uhlemann, E., Strom, E.G., Bilstrup, U.: Evaluation of the IEEE 802.11 p MAC method for vehicle-to-vehicle communication. In: IEEE 68th Vehicular Technology Conference, VTC 2008-Fall, pp. 1–5. IEEE (2008). http://ieeexplore.ieee.org/abstract/document/4657278/
  31. 31.
    Jerbi, M., Senouci, S.-M., Rasheed, T., Ghamri-Doudane, Y.: Towards efficient geographic routing in urban vehicular networks. IEEE Trans. Veh. Technol. 58(9), 5048–5059 (2009). http://ieeexplore.ieee.org/abstract/document/5061874/CrossRefGoogle Scholar
  32. 32.
    Taleb, T., Ochi, M., Jamalipour, A., Kato, N., Nemoto, Y.: An efficient vehicle-heading based routing protocol for VANET networks. In: 2006 IEEE Wireless Communications and Networking Conference, WCNC 2006, vol. 4, pp. 2199–2204. IEEE (2006). http://ieeexplore.ieee.org/abstract/document/1696637/
  33. 33.
    Borsetti, D., Gozalvez, J.: Infrastructure-assisted geo-routing for cooperative vehicular networks. In: 2010 IEEE Vehicular networking conference (VNC), pp. 255–262. IEEE (2010). http://ieeexplore.ieee.org/abstract/document/5698271/
  34. 34.
    Sondi, P., Wahl, M., Rivoirard, L., Cohin, O.: Performance evaluation of 802.11 p-based ad hoc vehicle-to-vehicle communications for usual applications under realistic urban mobility. IInt. J. Adv. Comput. Sci. Appl. IJACSA 7(5), p221–230 (2016)Google Scholar
  35. 35.
    Ucar, S., Ergen, S.C., Ozkasap, O.: Multihop-cluster-based IEEE 802.11 p and LTE hybrid architecture for VANET safety message dissemination. IEEE Trans. Veh. Technol. 65(4), 2621–2636 (2016). http://ieeexplore.ieee.org/abstract/document/7081788/CrossRefGoogle Scholar
  36. 36.
    Toor, Y., Muhlethaler, P., Laouiti, A.: Vehicle ad hoc networks: applications and related technical issues. IEEE Commun. Surv. Tutor. 10(3) (2008). http://ieeexplore.ieee.org/abstract/document/4625806/CrossRefGoogle Scholar
  37. 37.
    Elbery, A., Rakha, H., Elnainay, M., Drira, W., Filali, F.: Eco-routing using V2I communication: system evaluation. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), pp. 71–76. IEEE (2015). http://ieeexplore.ieee.org/abstract/document/7313112/
  38. 38.
    Santa, J., Pereñguez, F., Moragón, A., Skarmeta, A.F.: Experimental evaluation of CAM and DENM messaging services in vehicular communications. Transp. Res. Part C Emerg. Technol. 46, 98–120 (2014). http://www.sciencedirect.com/science/article/pii/S0968090X14001193CrossRefGoogle Scholar
  39. 39.
    Chan, K.: Future Communication Technology and Engineering: Proceedings of the 2014 International Conference on Future Communication Technology and Engineering (FCTE 2014), Shenzhen, China, 16–17 November 2014. CRC Press, Boca Raton (2015). Google-Books-ID: Oo7YCQAAQBAJGoogle Scholar
  40. 40.
    T. ETSI, 102 637-3 (2010): Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service. Technical Specification V1, vol. 1 (2010)Google Scholar
  41. 41.
    Backfrieder, C., Ostermayer, G., Mecklenbräuker, C.F.: TraffSim - a traffic simulator for investigations of congestion minimization through dynamic vehicle rerouting. ResearchGate 15(4), 38–47 (2014)Google Scholar
  42. 42.
    Kesting, A., Treiber, M., Helbing, D.: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1928), 4585–4605 (2010). http://rsta.royalsocietypublishing.org/content/368/1928/4585CrossRefGoogle Scholar
  43. 43.
    Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for car-following models. Transp. Res. Rec. J. Transp. Res. Board 1999, 86–94 (2007). http://trrjournalonline.trb.org/doi/abs/10.3141/1999-10CrossRefGoogle Scholar
  44. 44.
    Backfrieder, C., Ostermayer, G., Lindorfer, M., Mecklenbräuker, C.F.: Cooperative lane-change and longitudinal behaviour model extension for TraffSim. In: Alba, E., Chicano, F., Luque, G. (eds.) Smart Cities. Lecture Notes in Computer Science, pp. 52–62. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39595-1_6CrossRefGoogle Scholar
  45. 45.
    Backfrieder, C., Ostermayer, G.: Modeling a continuous and accident-free intersection control for vehicular traffic in TraffSim. In: 2014 European Modelling Symposium, pp. 332–337, October 2014Google Scholar
  46. 46.
    Treiber, M., Kesting, A.: Fuel consumption and emissions. In: Treiber, M., Kesting, A. (eds.) Traffic Flow Dynamics. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  47. 47.
    Lindorfer, M., Backfrieder, C., Kieslich, C., Krösche, J., Ostermayer, G.: Environmental-sensitive generation of street networks for traffic simulations. In: 2013 European Modelling Symposium, pp. 457–462, November 2013Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christian Backfrieder
    • 1
  • Manuel Lindorfer
    • 1
  • Christoph F. Mecklenbräuker
    • 2
  • Gerald Ostermayer
    • 1
  1. 1.Research Group Networks and MobilityFH Upper AustriaHagenbergAustria
  2. 2.Institute of TelecommunicationsTU WienViennaAustria

Personalised recommendations