Primary Immunodeficiencies in Pregnancy

  • Ekta Kakkar
  • Joud HajjarEmail author


Primary immunodeficiencies (PIDs) are a rare group of disorders that result from a variety of genetic defects and cause susceptibility to infections that can be life-threatening. Patients with PID often are diagnosed at a young age due to frequent infections; however, some PIDs, such as antibody deficiency disorders, are diagnosed in adulthood. In addition, some immune dysregulation disorders and PID with hypomorphic mutations might present with minimal symptoms during childhood and are not fully diagnosed until adolescence or adulthood. With prompt treatment of infections, prevention prophylaxis, and the development of immunoglobulin replacement therapy, patients with multiple PID diagnoses are now living into adulthood, including women of childbearing age. As the number of pregnancies in women with PID rises, immunologists and gynecologists have encountered a new obstacle in the care of these unique patients. In this chapter, we discuss the major PIDs affecting women of childbearing age and review the literature of reported pregnancies in specific PID diagnoses, summarize specific treatments used, and highlight the outcomes of their pregnancies.


Primary immunodeficiency PID Pregnancy in PID High-risk pregnancy Immune system in pregnancy 


  1. 1.
    Bousfiha A, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2018;38(1):129–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Gundlapalli AV, et al. Fertility, pregnancies and outcomes reported by females with common variable immune deficiency and hypogammaglobulinemia: results from an internet-based survey. J Clin Immunol. 2015;35(2):125–34.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Marciano BE, et al. X-linked carriers of chronic granulomatous disease: illness, lyonization, and stability. J Allergy Clin Immunol. 2018;141(1):365–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Martinez-Varea A, et al. Relationship between maternal immunological response during pregnancy and onset of preeclampsia. J Immunol Res. 2014;2014:210241.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Acar N, Ustunel I, Demir R. Uterine natural killer (uNK) cells and their missions during pregnancy: a review. Acta Histochem. 2011;113(2):82–91.PubMedCrossRefGoogle Scholar
  6. 6.
    Morelli S, Mandal M, Goldsmith LT, Kashani BN, Ponzio NM. The maternal immune system during pregnancy and its influence on fetal development. Dovepress. 2015;2015(6):171–89.Google Scholar
  7. 7.
    Michimata T, et al. Decrease of T-helper 2 and T-cytotoxic 2 cells at implantation sites occurs in unexplained recurrent spontaneous abortion with normal chromosomal content. Hum Reprod. 2003;18(7):1523–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Lederman MM. Cell-mediated immunity and pregnancy. Chest. 1984;86(3 Suppl):6S–9S.PubMedCrossRefGoogle Scholar
  9. 9.
    Common variable immune deficiency. Genetics Home Reference. 2017.Google Scholar
  10. 10.
    Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, Espinosa-Rosales FJ, Hammarström L, Nonoyama S, Quinti I, Routes JM, Tang MLK, Warnatz K. International consensus document (ICON): common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4(1):38–59.PubMedGoogle Scholar
  11. 11.
    Cunningham-Rundles C. The many faces of common variable immunodeficiency. Hematology Am Soc Hematol Educ Program. 2012;2012:301–5.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Orange JS, et al. Impact of trough IgG on pneumonia incidence in primary immunodeficiency: a meta-analysis of clinical studies. Clin Immunol. 2010;137(1):21–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Chapel H, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112(2):277–86.PubMedCrossRefGoogle Scholar
  14. 14.
    Resnick ES, et al. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119(7):1650–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 2012;2012:1–13.CrossRefGoogle Scholar
  16. 16.
    Bonilla FA, et al. International consensus document (ICON): common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4(1):38–59.PubMedCrossRefGoogle Scholar
  17. 17.
    Brinker KA, Silk HJ. Common variable immune deficiency and treatment with intravenous immunoglobulin during pregnancy. Ann Allergy Asthma Immunol. 2012;108(6):464–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Marasco C, et al. Management of common variable immunodeficiency by subcutaneous IgG self-administration during pregnancy – a case report. Clin Case Rep. 2017;5(8):1309–11.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gardulf A, et al. Rapid subcutaneous IgG replacement therapy at home for pregnant immunodeficient women. J Clin Immunol. 2001;21(2):150–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Cunningham-Rundles C. Key aspects for successful immunoglobulin therapy of primary immunodeficiencies. Clin Exp Immunol. 2011;164(Suppl 2):16–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    IgG subclass deficiency. Immune Deficiency Foundation. 2013.Google Scholar
  22. 22.
    Van Kessel DA, et al. Clinical and immunological evaluation of patients with mild IgG1 deficiency. Clin Exp Immunol. 1999;118(1):102–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Manfredi G, Dell’Aera L, Liguori R. Overcoming recurrent spontaneous abortions in women suffering from IgG subclass deficiency: high efficiency of low dose intravenous immunoglobulins treatment. Eur Ann Allergy Clin Immunol. 2015;47(3):91–4.PubMedGoogle Scholar
  24. 24.
    Yel L. Selective IgA deficiency. J Clin Immunol. 2010;30(1):10–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Selective IgA deficiency. Immune Deficiency Foundation. 2013.Google Scholar
  26. 26.
    Ludvigsson JF, et al. IgA deficiency, autoimmunity & pregnancy: a population-based matched cohort study. J Clin Immunol. 2014;34(7):853–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Petty RE, Sherry DD, Johannson J. Anti-IgA antibodies in pregnancy. N Engl J Med. 1985;313(26):1620–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Specific antibody deficiency. Immune Deficiency Foundation. 2013.Google Scholar
  29. 29.
    Autosomal dominant hyper IgE syndrome. Genetics Home Reference. 2018.Google Scholar
  30. 30.
    Hyper IgE syndrome. Immune Deficiency Foundation. 2013.Google Scholar
  31. 31.
    Shah NN, Freeman AF, Parta M, Helen S, Uzel G, Gea-Banacloche JC, Holland SM, Hickstein DD. Haploidentical transplantation for DOCK8 deficiency. Blood. 2015;126:2229.Google Scholar
  32. 32.
    Grimbacher B, WC. Autosomal dominant hyper-IgE syndrome. 2012.
  33. 33.
    Lindenbaum C, et al. Hyperimmunoglobulinemia E and pregnancy: a case report. Am J Obstet Gynecol. 1987;157(5):1273–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Miller FL, Mann DL. Anesthetic management of a pregnant patient with the hyperimmunoglobulin E (Job’s) syndrome. Anesth Analg. 1990;70(4):454–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Hyper IgM syndromes. Immune Deficiency Foundation. 2013.Google Scholar
  36. 36.
    Hyper IgM syndrome. Genetics Home Reference.Google Scholar
  37. 37.
    Olmsted BR, Kemp SF. Subcutaneous immunoglobulin (SCIG) therapy during pregnancy in a woman with hyper-IgM (HIGM) syndrome. J Allergy Clin Immunol. 2017;139(2):AB218.CrossRefGoogle Scholar
  38. 38.
    Fernandez J. Severe combined immunodeficiency (SCID). Merck Manual, Cleveland Clinic; 2017.
  39. 39.
    Newborn screening SCID. CDC. 2015.Google Scholar
  40. 40.
    Buckley RH. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes. Immunol Res. 2011;49(1–3):25–43.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Geier CB, et al. Leaky RAG deficiency in adult patients with impaired antibody production against bacterial polysaccharide antigens. PLoS One. 2015;10(7):e0133220.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Shrivastava VK, et al. Successful pregnancy in a patient with severe combined immunodeficiency syndrome treated with bone marrow transplantation. Obstet Gynecol. 2008;112(2 Pt 2):439–41.PubMedCrossRefGoogle Scholar
  43. 43.
    Booth C, Gaspar HB. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics. 2009;3:349–58.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Marissa Shams M. Management of ADA-deficient SCID patient during pregnancy. In: CIS annual meeting; 2016.Google Scholar
  45. 45.
    Martin J, et al. The first report of a pregnancy in a patient with purine nucleoside phosphorylase deficiency. Fetal Pediatr Pathol. 2016;35(2):120–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Puck JM, et al. Prenatal test for X-linked severe combined immunodeficiency by analysis of maternal X-chromosome inactivation and linkage analysis. N Engl J Med. 1990;322(15):1063–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Ataxia-telangiectasia. Genetics Home Reference. 2013.Google Scholar
  48. 48.
    Ataxia-telangiectasia. Immune Deficiency Foundation. 2013.Google Scholar
  49. 49.
    Tattersall R, Toghill PJ. Ataxia telangiectasia. Proc R Soc Med. 1970;63(5):453.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Speers L, Al-Sayegh H, Parveen S. The effect of ataxia telangiectasia on pregnancy and delivery: a case report. In: RCOG world congress meeting; 2013.Google Scholar
  51. 51.
    Bonilla FA, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol. 2015;136(5):1186–205 e1–78.PubMedCrossRefGoogle Scholar
  52. 52.
  53. 53.
    Patel K, et al. Immunoglobulin deficiencies: the B-lymphocyte side of DiGeorge syndrome. J Pediatr. 2012;161(5):950–3.PubMedCrossRefGoogle Scholar
  54. 54.
    McDonald-McGinn DM, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine (Baltimore). 2011;90(1):1–18.CrossRefGoogle Scholar
  55. 55.
    DiGeorge syndrome. Immune Deficiency Foundation. 2013.Google Scholar
  56. 56.
    Dentici ML, et al. Association of DiGeorge anomaly and caudal dysplasia sequence in a neonate born to a diabetic mother. Cardiol Young. 2013;23(1):14–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Chan C, et al. Reproductive health issues for adults with a common genomic disorder: 22q11.2 deletion syndrome. J Genet Couns. 2015;24(5):810–21.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Costain G, et al. Sex differences in reproductive fitness contribute to preferential maternal transmission of 22q11.2 deletions. J Med Genet. 2011;48(12):819–24.PubMedCrossRefGoogle Scholar
  59. 59.
    Fung WL, et al. Practical guidelines for managing adults with 22q11.2 deletion syndrome. Genet Med. 2015;17(8):599–609.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Arnold DE, Heimall JR. A review of chronic granulomatous disease. Adv Ther. 2017;34(12):2543–57.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chronic granulomatous disease. Genetics Home Reference. 2013.Google Scholar
  62. 62.
    Bone marrow transplant. Living with CGD.Google Scholar
  63. 63.
    Having children. CGD Society. 2017.Google Scholar
  64. 64.
    Blanco JD, Gibbs RS, Castaneda YS. Bacteremia in obstetrics: clinical course. Obstet Gynecol. 1981;58(5):621–5.PubMedGoogle Scholar
  65. 65.
    Hisano M, et al. Successful completion of pregnancy in a woman with chronic granulomatous disease. Obstet Med. 2011;4(4):174–6.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    X-linked CGD carriers, long overlooked, are getting more attention. Living with CGD. 2016.Google Scholar
  67. 67.
    Rosen-Wolff A, et al. Increased susceptibility of a carrier of X-linked chronic granulomatous disease (CGD) to Aspergillus fumigatus infection associated with age-related skewing of lyonization. Ann Hematol. 2001;80(2):113–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Haidar ZA, Malshe A, McKenna D. Chronic granulomatous disease carrier with recurrent poor obstetric outcome. Obstet Gynecol. 2014;123(2 Pt 2 Suppl 2):484–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Complement deficiencies. Immune Deficiency Foundation. 2013.Google Scholar
  70. 70.
    Truedsson L, Bengtsson AA, Sturfelt G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity. 2007;40(8):560–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev. 2010;23(4):740–80.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Regal JF, Gilbert JS, Burwick RM. The complement system and adverse pregnancy outcomes. Mol Immunol. 2015;67(1):56–70.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Singh J, Ahmed A, Girardi G. Role of complement component C1q in the onset of preeclampsia in mice. Hypertension. 2011;58(4):716–24.PubMedCrossRefGoogle Scholar
  74. 74.
    Lynch AM, et al. Complement activation fragment Bb in early pregnancy and spontaneous preterm birth. Am J Obstet Gynecol. 2008;199(4):354 e1–8.CrossRefGoogle Scholar
  75. 75.
    Soto E, et al. Preeclampsia and pregnancies with small-for-gestational age neonates have different profiles of complement split products. J Matern Fetal Neonatal Med. 2010;23(7):646–57.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Nowicki S, et al. Preterm labor: CD55 in maternal blood leukocytes. Am J Reprod Immunol. 2009;61(5):360–7.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Derzsy Z, et al. Activation of the complement system in normal pregnancy and preeclampsia. Mol Immunol. 2010;47(7–8):1500–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Burwick RM, Feinberg BB. Eculizumab for the treatment of preeclampsia/HELLP syndrome. Placenta. 2013;34(2):201–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Cohn AC, et al. Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2013;62(RR-2):1–28.PubMedGoogle Scholar
  80. 80.
    Mannose binding lectin deficiency. Genetics Home Reference.Google Scholar
  81. 81.
    Cieslinski JZ, et al. Mannose-binding lectin deficiency and miscarriages in rheumatoid arthritis. Autoimmunity. 2017;50(7):409–13.PubMedCrossRefGoogle Scholar
  82. 82.
    Mannose binding lectin protein deficiency. Genetic and Rare Diseases Information Center. 2016.Google Scholar
  83. 83.
    Tsutsumi A, Takahashi R, Sumida T. Mannose binding lectin: genetics and autoimmune disease. Autoimmun Rev. 2005;4(6):364–72.PubMedCrossRefGoogle Scholar
  84. 84.
    Christiansen OB, et al. Mannose-binding lectin-2 genotypes and recurrent late pregnancy losses. Hum Reprod. 2009;24(2):291–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Than NG, et al. A role for mannose-binding lectin, a component of the innate immune system in pre-eclampsia. Am J Reprod Immunol. 2008;60(4):333–45.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Potlukova E, et al. Association between low levels of Mannan-binding lectin and markers of autoimmune thyroid disease in pregnancy. PLoS One. 2013;8(12):e81755.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Dzwonek AB, et al. The role of mannose-binding lectin in susceptibility to infection in preterm neonates. Pediatr Res. 2008;63(6):680–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Paciolla M, et al. Rare mendelian primary immunodeficiency diseases associated with impaired NF-kappaB signaling. Genes Immun. 2015;16(4):239–46.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bonagura VR, Hintermeyer M, Wasserman RL, Younger ME. Immunoglobulin replacement therapy: individualizing a regimen.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Section of Immunology, Allergy and Rheumatology, Department of PediatricsBaylor College of MedicineHoustonUSA

Personalised recommendations