Advertisement

Image Super-Resolution Based on Dense Convolutional Network

  • Jie Li
  • Yue  Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11257)

Abstract

Recently, the performance of single image super-resolution (SISR) methods have been significantly improved with the development of the convolutional neural networks (CNN). In this paper, we propose a very deep dense convolutional network (SRDCN) for image super-resolution. Due to the dense connection, the feature maps of each preceding layer are connected and used as inputs of all subsequent layers, thus utilizing both low-level and high-level features. In addition, residual learning and dense skip connection are adopted to ease the difficulties of training very deep convolutional networks by alleviating the vanishing-gradient problem. Experimental results on four benchmark datasets demonstrate that our proposed method achieves comparable performance with other state-of-the-art methods.

Keywords

Single image super-resolution Dense convolutional network Residual learning 

References

  1. 1.
    Allebach, J., Wong, P.W.: Edge-directed interpolation. In: Proceedings of the International Conference on Image Processing, vol. 3, pp. 707–710. IEEE (1996)Google Scholar
  2. 2.
    Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)Google Scholar
  3. 3.
    Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10593-2_13CrossRefGoogle Scholar
  4. 4.
    Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)CrossRefGoogle Scholar
  5. 5.
    Duchon, C.E.: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 18(8), 1016–1022 (1979)CrossRefGoogle Scholar
  6. 6.
    Elad, M., Zeyde, R., Protter, M.: Single image super-resolution using sparse representation. SIAM Imaging Sci. (2010)Google Scholar
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)Google Scholar
  8. 8.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  9. 9.
    Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 3 (2017)Google Scholar
  10. 10.
    Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)Google Scholar
  11. 11.
    Kim, J., Kwon Lee, J., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)Google Scholar
  12. 12.
    Kim, J., Kwon Lee, J., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)Google Scholar
  13. 13.
    Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 624–632 (2017)Google Scholar
  14. 14.
    Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep laplacian pyramid networks. arXiv preprint arXiv:1710.01992 (2017)
  15. 15.
    Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802 (2016)
  16. 16.
    Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, vol. 1, p. 3 (2017)Google Scholar
  17. 17.
    Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems, pp. 2802–2810 (2016)Google Scholar
  18. 18.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)Google Scholar
  19. 19.
    Sheikh, H.R., Bovik, A.C., De Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. image process. 14(12), 2117–2128 (2005)CrossRefGoogle Scholar
  20. 20.
    Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)Google Scholar
  21. 21.
    Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)Google Scholar
  22. 22.
    Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16817-3_8CrossRefGoogle Scholar
  23. 23.
    Timofte, R., Rothe, R., Van Gool, L.: Seven ways to improve example-based single image super resolution. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1865–1873. IEEE (2016)Google Scholar
  24. 24.
    Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4809–4817. IEEE (2017)Google Scholar
  25. 25.
    Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 370–378 (2015)Google Scholar
  26. 26.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  27. 27.
    Yang, C.-Y., Ma, C., Yang, M.-H.: Single-image super-resolution: a benchmark. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 372–386. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10593-2_25CrossRefGoogle Scholar
  28. 28.
    Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27413-8_47CrossRefGoogle Scholar
  30. 30.
    Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 15(8), 2226–2238 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Image Processing and Pattern RecognitionShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations