Advertisement

Non-interactive Secure Computation from One-Way Functions

  • Saikrishna BadrinarayananEmail author
  • Abhishek Jain
  • Rafail Ostrovsky
  • Ivan Visconti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11274)

Abstract

The notion of non-interactive secure computation (NISC) first introduced in the work of Ishai et al. [EUROCRYPT 2011] studies the following problem: Suppose a receiver R wishes to publish an encryption of her secret input y so that any sender S with input x can then send a message m that reveals f(xy) to R (for some function f). Here, m can be viewed as an encryption of f(xy) that can be decrypted by R. NISC requires security against both malicious senders and receivers, and also requires the receiver’s message to be reusable across multiple computations (w.r.t. a fixed input of the receiver).

All previous solutions to this problem necessarily rely upon OT (or specific number-theoretic assumptions) even in the common reference string model or the random oracle model or to achieve weaker notions of security such as super-polynomial-time simulation.

In this work, we construct a NISC protocol based on the minimal assumption of one way functions, in the stateless hardware token model. Our construction achieves UC security and requires a single token sent by the receiver to the sender.

Keywords

Secure computation Hardware tokens 

Supplementary material

References

  1. 1.
    Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_22CrossRefGoogle Scholar
  2. 2.
    Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness indistinguishability and secure computation in the plain model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70700-6_10CrossRefzbMATHGoogle Scholar
  3. 3.
    Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-knowledge and its applications. In: FOCS (2001)Google Scholar
  4. 4.
    Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and applications to resettable cryptography. In: STOC (2013)Google Scholar
  5. 5.
    Bitansky, N., Paneth, O.: On non-black-box simulation and the impossibility of approximate obfuscation. SIAM J. Comput. 1383, 44–1325 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS (2001)Google Scholar
  7. 7.
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_4CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended abstract). In: STOC (2000)Google Scholar
  9. 9.
    Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random oracle. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA, 3–7 November 2014, pp. 597–608 (2014)Google Scholar
  10. 10.
    Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 545–562. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_31CrossRefGoogle Scholar
  11. 11.
    Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Efficient) universally composable oblivious transfer using a minimal number of stateless tokens. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 638–662. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_27CrossRefzbMATHGoogle Scholar
  12. 12.
    Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Visconti, I.: 4-round resettably-sound zero knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 192–216. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_9CrossRefGoogle Scholar
  13. 13.
    Chung, K., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous resettability from one-way functions. In: FOCS (2013)Google Scholar
  14. 14.
    Chung, K., Pass, R., Seth, K.: Non-black-box simulation from one-way functions and applications to resettable security. In: STOC (2013)Google Scholar
  15. 15.
    Chung, K., Pass, R., Seth, K.: Non-black-box simulation from one-way functions and applications to resettable security. SIAM J. Comput. 45, 415–458 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Döttling, N., Kraschewski, D., Müller-Quade, J.: Unconditional and composable security using a single stateful tamper-proof hardware token. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 164–181. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_11CrossRefGoogle Scholar
  17. 17.
    Döttling, N., Kraschewski, D., Müller-Quade, J.: Statistically Secure linear-rate dimension extension for oblivious affine function evaluation. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 111–128. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32284-6_7CrossRefzbMATHGoogle Scholar
  18. 18.
    Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: From stateful hardware to resettable hardware using symmetric assumptions. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 23–42. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26059-4_2CrossRefGoogle Scholar
  19. 19.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (1986)Google Scholar
  20. 20.
    Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_3CrossRefGoogle Scholar
  22. 22.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 186–208 (1989)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11799-2_19CrossRefzbMATHGoogle Scholar
  24. 24.
    Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_15CrossRefGoogle Scholar
  25. 25.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_23CrossRefGoogle Scholar
  26. 26.
    Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_7CrossRefGoogle Scholar
  27. 27.
    Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_21CrossRefGoogle Scholar
  28. 28.
    Kolesnikov, V.: Truly efficient string oblivious transfer using resettable tamper-proof tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 327–342. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11799-2_20CrossRefGoogle Scholar
  29. 29.
    Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the Offline/online and batch settings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 425–455. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_15CrossRefzbMATHGoogle Scholar
  30. 30.
    Moran, T., Segev, G.: David and goliath commitments: UC Computation for asymmetric parties using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_30CrossRefGoogle Scholar
  31. 31.
    Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4, 151–158 (1991)CrossRefGoogle Scholar
  32. 32.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pp. 387–394. ACM (1990)Google Scholar
  33. 33.
    Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Saikrishna Badrinarayanan
    • 1
    Email author
  • Abhishek Jain
    • 2
  • Rafail Ostrovsky
    • 1
  • Ivan Visconti
    • 3
  1. 1.UCLALos AngelesUSA
  2. 2.JHUBaltimoreUSA
  3. 3.University of SalernoFiscianoItaly

Personalised recommendations