Security of the Blockchain Against Long Delay Attack

  • Puwen WeiEmail author
  • Quan YuanEmail author
  • Yuliang Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11274)


The consensus protocol underlying Bitcoin (the blockchain) works remarkably well in practice. However proving its security in a formal setting has been an elusive goal. A recent analytical result by Pass, Seeman and shelat indicates that an idealized blockchain is indeed secure against attacks in an asynchronous network where messages are maliciously delayed by at most \(\varDelta \ll 1/np\), with n being the number of miners and p the mining hardness. This paper improves upon the result by showing that if appropriate inconsistency tolerance is allowed the blockchain can withstand even more powerful external attacks in the honest miner setting. Specifically we prove that the blockchain is secure against long delay attacks with \(\varDelta \ge 1/np\) in an asynchronous network.


Bitcoin Blockchain Delay Random oracle 



We would like to thank the anonymous reviewers of ASIACRYPT 2018 for their insightful and helpful comments. We are also grateful to Siu Ming Yiu, Zhengyu Zhang, Yingnan Deng, Shichen Wu and Xianrui Qin for interesting discussions. Puwen Wei and Quan Yuan were supported by the National Natural Science Foundation of China (No. 61502276 and No. 61572293). Puwen Wei was also supported by the Chinese Major Program of National Cryptography Development Foundation (No. MMJJ2017012) and the Fundamental Research Funds of Shandong University (No. 2016JC029).


  1. 1.
    Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer, Cham (2018). Scholar
  2. 2.
    Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payment from bitcoin. In: IEEE Symposium on Security and Privacy, pp. 459–474 (2014)Google Scholar
  3. 3.
    Carlsten, M., Kalodner, H.A., Weinberg, S.M., Narayanan, A.: On the instability of bitcoin without the block reward. In: ACM CCS 2016, pp. 154–167. ACM Press, New York (2016)Google Scholar
  4. 4.
    Daian, P., Pass, R., Shi, E.: Snow white: Provably secure proofs of stake. IACR Cryptology ePrint Archive, Report 2016/919 (2016)Google Scholar
  5. 5.
    David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). Scholar
  6. 6.
    Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In: 13th IEEE International Conference on Peer-to-Peer Computing, pp. 1–10. IEEE Computer Society Press (2013)Google Scholar
  7. 7.
    Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  8. 8.
    Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). Scholar
  9. 9.
    Eyal, I., Sirer, E.G.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy, vol. 7, pp. 89–103. IEEE Computer Society Press (2015)Google Scholar
  10. 10.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). Scholar
  11. 11.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 291–323. Springer, Cham (2017). Scholar
  12. 12.
    Gervais, A., Karame, G.O., Wust, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: ACM CCS 2016, pp. 3–16. ACM Press (2016)Google Scholar
  13. 13.
    Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. IACR Cryptology ePrint Archive, Report 2017/454 (2017)Google Scholar
  14. 14.
    Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin peer-to-peer network. In: Jung, J. (ed.) 24th USENIX Security Symposium, pp. 129–144. USENIX Association (2015)Google Scholar
  15. 15.
    Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining games. In: 2016 ACM Conference on Economics and Computation, pp. 365–382. ACM Press (2016)Google Scholar
  16. 16.
    Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols. IACR Cryptology ePrint Archive: Report 2015/1019 (2016)Google Scholar
  17. 17.
    Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). Scholar
  18. 18.
    Miller, A., LaViola, J.J.: Anonymous byzantine consensus from moderately-hard puzzles: a model of bitcoin. Technical report, CS-TR-14-01. University of Central Florida (2014)Google Scholar
  19. 19.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  20. 20.
    Natoli, C., Gramoli, V.: The balance attack against proof-of-work blockchains: the R3 testbed as an example. Computing Research Repository (2016). arXiv:1612.09426
  21. 21.
    Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish mining and combining with an eclipse attack. In: 2016 IEEE European Symposium on Security and Privacy, vol. 142, pp. 305–320. IEEE Computer Society Press (2016)Google Scholar
  22. 22.
    Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). Scholar
  23. 23.
    Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: ACM Symposium on Principles of Distributed Computing, pp. 315–324. ACM Press (2017)Google Scholar
  24. 24.
    Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017). Scholar
  25. 25.
    Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33. Springer, Cham (2018). Scholar
  26. 26.
    Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. arXiv preprint arXiv:1112.4980 (2011)
  27. 27.
    Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–532. Springer, Heidelberg (2017). Scholar
  28. 28.
    Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive compatibility of bitcoin mining pool reward functions. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 477–498. Springer, Heidelberg (2017). Scholar
  29. 29.
    Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. IACR Cryptology ePrint Archive: Report 2013/881 (2017)Google Scholar
  30. 30.
    Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 499–514. Springer, Heidelberg (2017). Scholar
  31. 31.
    Zohar, A.: Bitcoin: under the hood. In: Communications of the ACM, vol. 58, pp. 104–113. ACM Press (2015)Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.Key Laboratory of Cryptologic Technology and Information SecurityMinistry of Education, Shandong UniversityJinanChina
  2. 2.University of Alabama at BirminghamBirminghamUSA

Personalised recommendations