Advertisement

Identity-Based Encryption Tightly Secure Under Chosen-Ciphertext Attacks

  • Dennis Hofheinz
  • Dingding JiaEmail author
  • Jiaxin Pan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11273)

Abstract

We propose the first identity-based encryption (IBE) scheme that is (almost) tightly secure against chosen-ciphertext attacks. Our scheme is efficient, in the sense that its ciphertext overhead is only seven group elements, three group elements more than that of the state-of-the-art passively (almost) tightly secure IBE scheme. Our scheme is secure in a multi-challenge setting, i.e., in face of an arbitrary number of challenge ciphertexts. The security of our scheme is based upon the standard symmetric external Diffie-Hellman assumption in pairing-friendly groups, but we also consider (less efficient) generalizations under weaker assumptions.

Keywords

Identity-based encryption Chosen-ciphertext security Tight security reductions 

Notes

Acknowledgments

We thank the anonymous reviewers for their comments and, in particular, for pointing a problem in our definition of unbounded simulation soundness, and one in the proof of Theorem 4 in a previous version of this paper. The first author was supported by ERC Project PREP-CRYPTO (724307) and DFG grants (HO 4534/4-1, HO 4534/2-2), the second author was supported by the National Nature Science Foundation of China (Nos. 61502484, 61572495, 61772515), the Fundamental theory and cutting edge technology Research Program of Institute of Information Engineering, CAS (Grant No. Y7Z0291103) and the National Cryptography Development Fund (No. MMJJ20170116), and the third author was supported by the DFG grant (HO 4534/4-1). This work was done while the second author was visiting KIT. The visit was supported by China Scholarship Council.

References

  1. 1.
    Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_20CrossRefGoogle Scholar
  2. 2.
    Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63715-0_19CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryption with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_22CrossRefGoogle Scholar
  4. 4.
    Auerbach, B., Cash, D., Fersch, M., Kiltz, E.: Memory-tight reductions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 101–132. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_4CrossRefGoogle Scholar
  5. 5.
    Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_26CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_18CrossRefzbMATHGoogle Scholar
  7. 7.
    Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message authentication based on non-interactive zero knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_19CrossRefGoogle Scholar
  8. 8.
    Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_23CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilinear maps. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 98–110. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36563-X_7CrossRefGoogle Scholar
  11. 11.
    Chen, J., Gong, J., Weng, J.: Tightly secure IBE under constant-size master public key. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 207–231. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_9CrossRefGoogle Scholar
  12. 12.
    Chen, J., Wee, H.: Fully, (almost) tightly secure ibe and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_25CrossRefGoogle Scholar
  13. 13.
    Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 339–356. Springer, Heidelberg (2006).  https://doi.org/10.1007/11967668_22CrossRefGoogle Scholar
  14. 14.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4CrossRefGoogle Scholar
  15. 15.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  17. 17.
    Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_1CrossRefGoogle Scholar
  18. 18.
    Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_8CrossRefGoogle Scholar
  19. 19.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_27CrossRefGoogle Scholar
  20. 20.
    Giacon, F., Kiltz, E., Poettering, B.: Hybrid encryption in a multi-user setting, revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 159–189. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76578-5_6CrossRefGoogle Scholar
  21. 21.
    Gong, J., Chen, J., Dong, X., Cao, Z., Tang, S.: Extended nested dual system groups, revisited. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 133–163. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_6CrossRefGoogle Scholar
  22. 22.
    Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to standard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_21CrossRefGoogle Scholar
  23. 23.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935230_29CrossRefGoogle Scholar
  24. 24.
    Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput. 41(5), 1193–1232 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Han, S., Liu, S., Qin, B., Gu, D.: Tightly CCA-secure identity-based encryption with ciphertext pseudorandomness. Designs, Codes and Cryptography 86(3), 517–554 (2018). https://doi.org/10.1007/s10623-017-0339-3MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 65–94. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_3CrossRefGoogle Scholar
  27. 27.
    Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 251–281. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_11CrossRefzbMATHGoogle Scholar
  28. 28.
    Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_17CrossRefGoogle Scholar
  29. 29.
    Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_35CrossRefGoogle Scholar
  30. 30.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_31CrossRefGoogle Scholar
  31. 31.
    Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_36CrossRefGoogle Scholar
  32. 32.
    Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure structure-preserving signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 123–152. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_5CrossRefGoogle Scholar
  33. 33.
    Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_1CrossRefGoogle Scholar
  34. 34.
    Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_4CrossRefGoogle Scholar
  35. 35.
    Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_26CrossRefGoogle Scholar
  36. 36.
    Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_4CrossRefGoogle Scholar
  37. 37.
    Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_1CrossRefGoogle Scholar
  38. 38.
    Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 681–707. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_28CrossRefGoogle Scholar
  39. 39.
    Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 729–758. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_27CrossRefGoogle Scholar
  40. 40.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press, October 1997Google Scholar
  41. 41.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990Google Scholar
  42. 42.
    Shoup, V., Shoup, V.: Why chosen ciphertext security matters. IBM research report RZ 3076 (1998)Google Scholar
  43. 43.
    Wang, Y., Matsuda, T., Hanaoka, G., Tanaka, K.: Memory lower bounds of reductions revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 61–90. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_3CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.State Key Laboratory of Information SecurityInstitute of Information Engineering, CASBeijingChina
  3. 3.Data Assurance and Communication Security Research CenterIIE, CASBeijingChina
  4. 4.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations