Advertisement

Decentralized Multi-Client Functional Encryption for Inner Product

  • Jérémy Chotard
  • Edouard Dufour Sans
  • Romain Gay
  • Duong Hieu Phan
  • David Pointcheval
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11273)

Abstract

We consider a situation where multiple parties, owning data that have to be frequently updated, agree to share weighted sums of these data with some aggregator, but where they do not wish to reveal their individual data, and do not trust each other. We combine techniques from Private Stream Aggregation (PSA) and Functional Encryption (FE), to introduce a primitive we call Decentralized Multi-Client Functional Encryption (DMCFE), for which we give a practical instantiation for Inner Product functionalities. This primitive allows various senders to non-interactively generate ciphertexts which support inner-product evaluation, with functional decryption keys that can also be generated non-interactively, in a distributed way, among the senders. Interactions are required during the setup phase only. We prove adaptive security of our constructions, while allowing corruptions of the clients, in the random oracle model.

Keywords

Decentralized Multi-Client Functional encryption Inner product 

Notes

Acknowledgments

This work was supported in part by the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud), the European Community’s Horizon 2020 Project FENTEC (Grant Agreement no. 780108), the Google PhD fellowship, the ANR ALAMBIC (ANR16-CE39-0006) and the French FUI ANBLIC Project.

Supplementary material

References

  1. 1.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_33CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for inner products: function-hiding realizations and constructions without pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, part I. LNCS, vol. 10991, pp. 597–627. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96884-1_20CrossRefGoogle Scholar
  3. 3.
    Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_21CrossRefGoogle Scholar
  4. 4.
    Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_12CrossRefGoogle Scholar
  5. 5.
    Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, part II. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_32CrossRefzbMATHGoogle Scholar
  6. 6.
    Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, part II. LNCS, vol. 10032, pp. 557–587. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_19CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press, October 1997Google Scholar
  8. 8.
    Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 10:1–10:21 (2016)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  10. 10.
    Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the private-key setting: stronger security from weaker assumptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, part II. LNCS, vol. 9666, pp. 852–880. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_30CrossRefzbMATHGoogle Scholar
  11. 11.
    Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32946-3_15CrossRefGoogle Scholar
  12. 12.
    Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner product functional encryption from the k-linear assumption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, part II. LNCS, vol. 10770, pp. 245–277. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_9CrossRefGoogle Scholar
  13. 13.
    Emura, K.: Privacy-preserving aggregation of time-series data with public verifiability from simple assumptions. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 193–213. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59870-3_11CrossRefzbMATHGoogle Scholar
  14. 14.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  15. 15.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013Google Scholar
  16. 16.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_32CrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_30CrossRefGoogle Scholar
  18. 18.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June 2013Google Scholar
  19. 19.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_11CrossRefGoogle Scholar
  20. 20.
    Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional encryption. Cryptology ePrint Archive, Report 2013/774 (2013). http://eprint.iacr.org/2013/774
  21. 21.
    Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_10CrossRefzbMATHGoogle Scholar
  22. 22.
    Lee, K., Lee, D.H.: Two-input functional encryption for inner products from bilinear maps. IACR Cryptology ePrint Archive 2016, 432 (2016). http://eprint.iacr.org/2016/432
  23. 23.
    Li, Q., Cao, G.: Efficient and privacy-preserving data aggregation in mobile sensing. In: ICNP 2012, pp. 1–10. IEEE Computer Society (2012)Google Scholar
  24. 24.
    Li, Q., Cao, G.: Efficient privacy-preserving stream aggregation in mobile sensing with low aggregation error. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 60–81. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39077-7_4CrossRefGoogle Scholar
  25. 25.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_16CrossRefGoogle Scholar
  26. 26.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005Google Scholar
  27. 27.
    Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp. 463–472. ACM Press, October 2010Google Scholar
  28. 28.
    Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27CrossRefGoogle Scholar
  29. 29.
    Shi, E., Chan, T.H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: NDSS 2011. The Internet Society, February 2011Google Scholar
  30. 30.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, part II. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_33CrossRefGoogle Scholar
  31. 31.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_26CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Jérémy Chotard
    • 1
    • 2
    • 3
  • Edouard Dufour Sans
    • 2
    • 3
  • Romain Gay
    • 2
    • 3
  • Duong Hieu Phan
    • 1
  • David Pointcheval
    • 2
    • 3
  1. 1.XLIM, University of Limoges, CNRSLimogesFrance
  2. 2.DIENS, École normale supérieure, CNRS, PSL UniversityParisFrance
  3. 3.InriaParisFrance

Personalised recommendations