Advertisement

Unbounded Inner Product Functional Encryption from Bilinear Maps

  • Junichi TomidaEmail author
  • Katsuyuki TakashimaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11273)

Abstract

Inner product functional encryption (IPFE), introduced by Abdalla et al. (PKC2015), is a kind of functional encryption supporting only inner product functionality. All previous IPFE schemes are bounded schemes, meaning that the vector length that can be handled in the scheme is fixed in the setup phase. In this paper, we propose the first unbounded IPFE schemes, in which we do not have to fix the lengths of vectors in the setup phase and can handle (a priori) unbounded polynomial lengths of vectors. Our first scheme is private-key based and fully function hiding. That is, secret keys hide the information of the associated function. Our second scheme is public-key based and provides adaptive security in the indistinguishability based security definition. Both our schemes are based on SXDH, which is a well-studied standard assumption, and secure in the standard model. Furthermore, our schemes are quite efficient, incurring an efficiency loss by only a small constant factor from previous bounded function hiding schemes.

Keywords

Functional encryption Inner product Function hiding Unbounded Bilinear maps 

Notes

Acknowledgments

We are very grateful to Pratish Datta and Tatsuaki Okamoto for giving us a chance to start this work. We also would like to thank anonymous reviewers for their helpful comments.

References

  1. 1.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_33CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for functional encryption for inner product evaluations. Cryptology ePrint Archive, Report 2016/011 (2016). http://eprint.iacr.org/2016/011
  3. 3.
    Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for inner products: function-hiding realizations and constructions without pairings. Cryptology ePrint Archive, Report 2017/972 (2017). http://eprint.iacr.org/2017/972
  4. 4.
    Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_21CrossRefGoogle Scholar
  5. 5.
    Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_12CrossRefGoogle Scholar
  6. 6.
    Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_31CrossRefGoogle Scholar
  7. 7.
    Attrapadung, N.: Dual system encryption framework in prime-order groups via computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_20CrossRefzbMATHGoogle Scholar
  8. 8.
    Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_20CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  10. 10.
    Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_13CrossRefGoogle Scholar
  11. 11.
    Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_19CrossRefGoogle Scholar
  12. 12.
    Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for Boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 277–297. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10879-7_16CrossRefGoogle Scholar
  13. 13.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_7CrossRefGoogle Scholar
  14. 14.
    Datta, P., Okamoto, T., Tomida, J.: Full-Hiding (Unbounded) Multi-input Inner Product Functional Encryption from the k-Linear Assumption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 245–277. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_9CrossRefGoogle Scholar
  15. 15.
    Dufour Sans, E., Pointcheval, D.: Unbounded inner product functional encryption, with succinct keys. Cryptology ePrint Archive, Report 2018/487 (2018). https://eprint.iacr.org/2018/487
  16. 16.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_1CrossRefGoogle Scholar
  17. 17.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013Google Scholar
  18. 18.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_18CrossRefGoogle Scholar
  19. 19.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October–November 2006. Available as Cryptology ePrint Archive Report 2006/309Google Scholar
  20. 20.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_9CrossRefGoogle Scholar
  21. 21.
    Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding inner product encryption is practical. Cryptology ePrint Archive, Report 2016/440 (2016). http://eprint.iacr.org/2016/440
  22. 22.
    Kim, S., Kim, J., Seo, J.H.: A new approach for practical function-private inner product encryption. Cryptology ePrint Archive, Report 2017/004 (2017). http://eprint.iacr.org/2017/004
  23. 23.
    Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_30CrossRefGoogle Scholar
  24. 24.
    Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_20CrossRefGoogle Scholar
  25. 25.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_11CrossRefGoogle Scholar
  26. 26.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_22CrossRefGoogle Scholar
  27. 27.
    O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556
  28. 28.
    Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45871-7_24CrossRefzbMATHGoogle Scholar
  29. 29.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_36CrossRefGoogle Scholar
  30. 30.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_33CrossRefGoogle Scholar
  31. 31.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_26CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.NTTTokyoJapan
  2. 2.Mitubishi ElectricKanagawaJapan

Personalised recommendations