Advertisement

Statistical Ineffective Fault Attacks on Masked AES with Fault Countermeasures

  • Christoph Dobraunig
  • Maria Eichlseder
  • Hannes Gross
  • Stefan Mangard
  • Florian Mendel
  • Robert Primas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11273)

Abstract

Implementation attacks like side-channel and fault attacks are a threat to deployed devices especially if an attacker has physical access. As a consequence, devices like smart cards and IoT devices usually provide countermeasures against implementation attacks, such as masking against side-channel attacks and detection-based countermeasures like temporal or spacial redundancy against fault attacks. In this paper, we show how to attack implementations protected with both masking and detection-based fault countermeasures by using statistical ineffective fault attacks using a single fault induction per execution. Our attacks are largely unaffected by the deployed protection order of masking and the level of redundancy of the detection-based countermeasure. These observations show that the combination of masking plus error detection alone may not provide sufficient protection against implementation attacks.

Keywords

Implementation attack Fault attack SFA SIFA 

Notes

Acknowledgments

This project has received funding in part from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 681402) and by the Austrian Research Promotion Agency (FFG) via the project ESPRESSO, which is funded by the province of Styria and the Business Promotion Agencies of Styria and Carinthia.

References

  1. 1.
    Berti, F., Pereira, O., Peters, T., Standaert, F.X.: On leakage-resilient authenticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol. 2017(3), 271–293 (2017)Google Scholar
  2. 2.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052259CrossRefGoogle Scholar
  3. 3.
    Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Efficient and first-order DPA resistant implementations of Keccak. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08302-5_13CrossRefGoogle Scholar
  4. 4.
    Boyar, J., Peralta, R.: A depth-16 circuit for the AES S-box. IACR Cryptology ePrint Archive, Report 2011/332 (2011). https://eprint.iacr.org/2011/332
  5. 5.
    Clavier, C.: Secret external encodings do not prevent transient fault analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74735-2_13CrossRefGoogle Scholar
  6. 6.
    Coron, J.S.: Higher order countermeasures for AES and DES (2017). https://github.com/coron/htable#higher-order-countermeasures-for-aes-and-des
  7. 7.
    Daemen, J.: Cipher and hash function design, strategies based on linear and differential cryptanalysis. Ph.D. thesis, KU Leuven (1995). http://jda.noekeon.org/
  8. 8.
    Daemen, J., Govaerts, R., Vandewalle, J.: An efficient nonlinear shift-invariant transformation. In: Macq, B. (ed.) Information Theory in the Benelux. pp. 108–115. Werkgemeenschap voor Informatie- en Communicatietheorie (1994)Google Scholar
  9. 9.
    Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault attacks on nonce-based authenticated encryption schemes. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 369–395. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_14CrossRefGoogle Scholar
  10. 10.
    Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.: SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547–572 (2018)Google Scholar
  11. 11.
    Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP - towards side-channel secure authenticated encryption. IACR Trans. Symmetric Cryptol. 2017(1), 80–105 (2017)Google Scholar
  12. 12.
    Dobraunig, C., Koeune, F., Mangard, S., Mendel, F., Standaert, F.-X.: Towards fresh and hybrid re-keying schemes with beyond birthday security. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 225–241. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31271-2_14CrossRefGoogle Scholar
  13. 13.
    Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty ciphertexts only. In: Fischer, W., Schmidt, J.M. (eds.) FDTC 2013, pp. 108–118. IEEE Computer Society, Los Alamitos (2013)CrossRefGoogle Scholar
  14. 14.
    Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order. IACR Cryptology ePrint Archive, Report 2016/486 (2016). https://eprint.iacr.org/2016/486
  15. 15.
    Gross, H., Mangard, S., Korak, T.: An efficient side-channel protected AES implementation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-52153-4_6CrossRefGoogle Scholar
  16. 16.
    Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_27CrossRefGoogle Scholar
  17. 17.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25CrossRefGoogle Scholar
  18. 18.
    Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: security against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12678-9_17CrossRefGoogle Scholar
  19. 19.
    Mennink, B., Neves, S.: Optimal PRFs from blockcipher designs. IACR Trans. Symmetric Cryptol. 2017(3), 228–252 (2017)Google Scholar
  20. 20.
    Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935308_38CrossRefzbMATHGoogle Scholar
  21. 21.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45418-7_17CrossRefzbMATHGoogle Scholar
  22. 22.
    Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_37CrossRefGoogle Scholar
  23. 23.
    Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15031-9_28CrossRefGoogle Scholar
  24. 24.
    Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware countermeasures against side-channel and fault-injection attacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 302–332. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_11CrossRefGoogle Scholar
  25. 25.
    Schwabe, P., Stoffelen, K.: All the aes you need on Cortex-M3 and M4. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 180–194. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69453-5_10CrossRefGoogle Scholar
  26. 26.
    Trichina, E.: Combinational logic design for AES SubByte transformation on masked data. IACR Cryptology ePrint Archive, Report 2003/236 (2003). https://eprint.iacr.org/2003/236
  27. 27.
    Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with randomization. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 93–111. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44709-3_6CrossRefGoogle Scholar
  28. 28.
    Ullrich, M., De Cannière, C., Indesteege, S., Küçük, Ö., Mouha, N., Preneel, B.: Finding optimal bitsliced implementations of \(4 \times 4\)-bit S-boxes. In: ECRYPT Symmetric Key Encryption Workshop - SKEW 2011, pp. 16–17 (2011)Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Christoph Dobraunig
    • 1
  • Maria Eichlseder
    • 1
  • Hannes Gross
    • 1
  • Stefan Mangard
    • 1
  • Florian Mendel
    • 2
  • Robert Primas
    • 1
  1. 1.Graz University of TechnologyGrazAustria
  2. 2.Infineon Technologies AGNeubibergGermany

Personalised recommendations