Analysis of Frequent Visitor Patterns in a Shopping Mall

  • Onur Dogan
  • Omer Faruk Gurcan
  • Basar OztaysiEmail author
  • Ugur Gokdere
Conference paper
Part of the Lecture Notes in Management and Industrial Engineering book series (LNMIE)


Recent technological advances enabled companies to collect, store and process a large amount of data. Automated collection of human behavior is one of the recent developments in data collection field. Companies can analyze the behaviors of their customers and get insight into their needs by using automated collection technology. In this study, we analyze location-based services data collected from a major shopping mall in İstanbul. The data is composed of 293 locations and 12070 unique visitors. The results show the most frequent routes that users follow during different periods.


Data mining Location based services Bluetooth Market basket analysis 


  1. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings 20th International Conference Very Large Data Bases. VLDB (Vol. 1215, pp. 487–499).Google Scholar
  2. Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Washington D.C. (pp. 207–216).Google Scholar
  3. Arroyo, R., Yebes, J. J., Bergasa, L. M., Daza, I. G., & Almazán, J. (2015). Expert video-surveillance system for real-time detection of suspicious behaviors in shopping malls. Expert Systems with Applications, 42(21), 7991–8005.CrossRefGoogle Scholar
  4. Asha, C., & Narasimhadhan, A. (2017). Robust infrared target tracking using discriminative and generative approaches. Infrared Physics & Technology, 85, 114–127.CrossRefGoogle Scholar
  5. Bihler, P., Imhoff, P., & Cremers, A. B. (2011). A Smartphone museum guide with ultrasound control. Procedia Computer Science, 5, 586–592.CrossRefGoogle Scholar
  6. Cao, Q., Jones, D. R., & Sheng, H. (2014). Contained nomadic information environments: Technology, organization, and environment influences on adoption of hospital RFID patient tracking. Information & Management, 51(2), 225–239.CrossRefGoogle Scholar
  7. Carrera, J. L., Zhao, Z., Braun, T., Li, Z., & Neto, A. (2018). A real-time robust indoor tracking system in smartphones. Computer Communications, 117, 104–115.CrossRefGoogle Scholar
  8. Castillo-Cara, M., Huaranga-Junco, E., Mondragon-Ruiz, G., Salazar, A., Barbosa, L. O., & Antunez, E. A. (2016). Ray: Smart indoor/outdoor routes for the blind using bluetooth 4.0 BLE. Procedia Computer Science, 83, 690–694.CrossRefGoogle Scholar
  9. Catarinucci, L., Colella, R., Mainetti, L., Patrono, L., Pieretti, S., Sergi, I., et al. (2014). Smart RFID antenna system for indoor tracking and behavior analysis of small animals in colony cages. IEEE Sensors Journal, 14(4), 1198–1206.CrossRefGoogle Scholar
  10. Das, G., & Varshneya, G. (2017). Consumer emotions: Determinants and outcomes in a shopping mall. Journal of Retailing and Consumer Services, 38, 177–185.CrossRefGoogle Scholar
  11. Delafontaine, M., Versichele, M., Neutens, T., & de Weghe, N. V. (2012). Analysing spatiotemporal sequences in bluetooth tracking data. Applied Geography, 34, 659–668.CrossRefGoogle Scholar
  12. Esterle, L., Lewis, P. R., Yao, X., & Rinner, B. (2014). Socio-economic vision graph generation and handover in distributed smart camera networks. ACM Transactions on Sensor Networks (TOSN), 10(2), 20–24.CrossRefGoogle Scholar
  13. Feng, F., Cho, J., Pedrycz, W., Fujita, H., & Herawan, T. (2016). Soft set based association rule mining. Knowledge-Based Systems, 111, 268–282.CrossRefGoogle Scholar
  14. Frisby, J., Smith, V., Traub, S., & Patel, V. L. (2017). Contextual computing: A bluetooth based approach for tracking healthcare providers in the emergency room. Journal of Biomedical Informatics, 65, 97–104.CrossRefGoogle Scholar
  15. Fukuzaki, Y., Mochizuki, M., Murao, K., & Nishio, N. (2015). Statistical analysis of actual number of pedestrians for Wi-Fi packet-based pedestrian flow sensing. In Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers. UbiComp/ISWC’15 Adjunct (pp. 1519–1526). New York, NY, USA: ACM.Google Scholar
  16. Han, J. W., & Kamber, M. (2006). Data mining: Concepts and techniques. San Francisco: Morgan Kaufmann.zbMATHGoogle Scholar
  17. Han, J. W., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In Proceeding SIGMOD ‘00 Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (Vol. 29, Issue 2, pp. 1–12).Google Scholar
  18. Hernández, N., Ocaña, M., Alonso, J. M., & Kim, E. (2014). WiFi-based indoor localization and tracking of a moving device. In Ubiquitous positioning indoor navigation and location based service. Corpus Christ, TX, USA.Google Scholar
  19. Hurjui, C., Graur, A., & Turcu, C. O. (2008). Monitoring the shopping activities from the supermarkets based on the intelligent basket by using the RFID technology. Electronics and Electrical Engineering, 83(3), 7–10.Google Scholar
  20. Infosys. (2013). Consumers worldwide will allow access to personal data for clear benefits, Says Infosys Study. Retrieved March 21, 2017 from
  21. Jaramillo, P., & Linnartz, J.-P. (2015). Hidden Markov model for improved ultrasound-based presence detection. In International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), Liverpool, UK.Google Scholar
  22. Jones, P., Clarke-Hill, C., Shears, P., Comfort, D., & Hillier, D. (2004). Radio frequency identification in the UK: Opportunities and challenges. International Journal of Retail & Distribution Management, 32(3), 164–171.CrossRefGoogle Scholar
  23. Jovanovic, N., Ozcelebi, T., & Lukkien, J. (2014). Indoor user positioning using infrared LEDs and sensors. In International Conference on Indoor Positioning and Indoor Navigation, Busan, South Korea.Google Scholar
  24. Kesari, B., & Atulkar, S. (2016). Satisfaction of mall shoppers: A study on perceived utilitarian and hedonic shopping values. Journal of Retailing and Consumer Services, 31, 22–31.CrossRefGoogle Scholar
  25. Kirchberg, V., & Tröndle, M. (2012). Experiencing exhibitions: A review of studies on visitor experiences in museums. Curator: The Museum Journal, 55(4), 435–452.CrossRefGoogle Scholar
  26. Li, M., Lin, L. F., & Ho, C. C. (2017). A social route recommender mechanism for store shopping support. Journal Decision Support Systems, 94(C), 97–108.CrossRefGoogle Scholar
  27. Liu, H., Yang, J., Sidhom, S., Wang, Y., Chen, Y., & Ye, F. (2014). Accurate WiFi based localization for smartphones using peer assistance. IEEE Transactions on Mobile Computing, 13(10), 2199–2214.CrossRefGoogle Scholar
  28. Liu, J., Zhang, G., Liu, Y., Tian, L., & Chen, Y. Q. (2015). An ultra-fast human detection method for color-depth camera. Journal of Visual Communication and Image Representation, 31, 177–185.CrossRefGoogle Scholar
  29. Merad, D., Kheir-Eddine, A., Rabah, I., Bernard, F., & Pierre, D. (2016). Tracking multiple persons under partial and global occlusions: Application to customers’ behavior analysis. Pattern Recognition Letters, 81, 11–20.CrossRefGoogle Scholar
  30. Oosterlinck, D., Benoit, D. F., Baecke, P., & Weghe, N. V. (2017). Bluetooth tracking of humans in an indoor environment: An application to shopping mall visits. Applied Geography, 78, 55–65.CrossRefGoogle Scholar
  31. Pan, M.-S., Liu, P.-L., & Lin, Y.-P. (2014). Event data collection in ZigBee tree-based wireless sensor networks. Computer Networks, 73, 142–153.CrossRefGoogle Scholar
  32. RetailNext. (2017). Retail’s main event: Brick & mortar vs online. San Francisco: RetailNext.Google Scholar
  33. Salim, F., Williams, M., Sony, N., Pena, M. D., Petrov, Y., Saad, A. A., et al. (2014). Visualization of wireless sensor networks using ZigBee’s received signal strength indicator (RSSI) for indoor localization and tracking. In International Conference on Pervasive Computing and Communications Workshops, Budapest, Hungary.Google Scholar
  34. Seol, S., Lee, E.-K., & Kim, W. (2017). Indoor mobile object tracking using RFID. Future Generation Computer Systems, 76, 443–451.CrossRefGoogle Scholar
  35. Stępień, J., Kołodziej, J., & Machowski, W. (2016). Mobile user tracking system with ZigBee. Microprocessors and Microsystems, 44, 47–55.CrossRefGoogle Scholar
  36. Tan, P. N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.Google Scholar
  37. Willems, K., Smolders, A., Brengman, M., Luyten, K., & Schöning, J. (2017). The path-to-purchase is paved with digital opportunities: An inventory of shopper-oriented retail technologies. Technological Forecasting and Social Change, 124, 228–242.CrossRefGoogle Scholar
  38. Wu, Y. K., Wang, H. C., Chang, L. C., & Chou, S. C. (2015). Customer’s flow analysis in physical retail store. Procedia Manufacturing, 3, 3506–3513.CrossRefGoogle Scholar
  39. Yewatkar, A., Inamdar, F., Singh, R., & Ayushya, A. Bandal. (2016). Smart cart with automatic billing. Product information. Product recommendation using RFID & Zigbee with anti-theft. Procedia Computer Science, 79, 793–800.CrossRefGoogle Scholar
  40. Yim, J., Jeong, S., Gwon, K., & Joo, J. (2010). Improvement of Kalman filters for WLAN based indoor tracking. Expert Systems with Applications, 37(1), 426–433.CrossRefGoogle Scholar
  41. Yiu, C. Y., & Ng, H. C. (2010). Buyers-to-shoppers ratio of shopping malls: A probit study in Hong Kong. Journal of Retailing and Consumer Services, 17(5), 349–354.CrossRefGoogle Scholar
  42. Yoshimura, Y., Sobolevsky, S., Ratti, C., Girardin, F., Carrascal, J. P., Blat, J., et al. (2014). An analysis of visitors’ behavior in The Louvre Museum: A study using bluetooth data. Environment and Planning B: Urban Analytics and City Science, 41(6), 1113–1131.CrossRefGoogle Scholar
  43. Yoshimura, Y., Amini, A., Sobolevsky, S., Blat, J., & Ratti, C. (2017). Analysis of pedestrian behaviors through non-invasive bluetooth. Applied Geography, 81, 43–51.CrossRefGoogle Scholar
  44. Yuanfeng, D., Dongkai, Y., Huilin, Y., & Chundi, X. (2016). Flexible indoor localization and tracking system based on mobile phone. Journal of Network and Computer Applications, 69, 107–116.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Onur Dogan
    • 1
  • Omer Faruk Gurcan
    • 1
  • Basar Oztaysi
    • 1
    Email author
  • Ugur Gokdere
    • 1
    • 2
  1. 1.Industrial Engineering Department, Management FacultyIstanbul Technical UniversityIstanbulTurkey
  2. 2.Blesh IncorporatedIstanbulTurkey

Personalised recommendations