Advertisement

An Optimization Model for Variable Ordering in Qualitative Constraint Propagation

  • Mehmet Fatih HocaoğluEmail author
Conference paper
Part of the Lecture Notes in Management and Industrial Engineering book series (LNMIE)

Abstract

In this study, a nonlinear optimization model is proposed to determine the constraint propagation (CP) of qualitative constraint sets to minimize search backtracking points. The model gives answers to the questions of what the optimal sequence is in the case that there is a set of variables with known values and, alternatively, what variable sequence is optimal to be able to have an optimal value propagation (what variable values should be known to have optimum variable sequence). In order to improve the solution performance, a constraint activation analysis is initiated for the constraints that are defined for the variables with known values by sign algebraic Karush-Kuhn-Tucker conditions. The optimization model and the qualitative activity analysis carried out can be applied to any constraint propagation problem where the variables have a limited set of values.

Keywords

Constraint activation analysis Constraint propagation Variable propagation optimization Variable ordering Qualitative reasoning Qualitative simulation 

References

  1. Berkholz, C., & Verbitsky, O. (2018). On the speed of constraint propagation and the time complexity of arc consistency testing. Journal of Computer and System Sciences, 91, 104–114.  https://doi.org/10.1016/j.jcss.2017.09.003.MathSciNetCrossRefzbMATHGoogle Scholar
  2. De Kleer, J., & Brown, J. S. (2013). A qualitative physics based on confluences. In Readings in Qualitative Reasoning About Physical Systems (pp. 88–126).  https://doi.org/10.1016/B978-1-4832-1447-4.50013-4.CrossRefGoogle Scholar
  3. Dechter, R. (2003). Constraint processing. Elsevier Morgan Kaufmann.Google Scholar
  4. Dechter, R., & Pearl, J. (1989). Tree clustering for constraint networks. Artificial Intelligence, 38(3), 353–366.  https://doi.org/10.1016/0004-3702(89)90037-4.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Forbus, K. D. (2013). Qualitative process theory. In Readings in Qualitative Reasoning About Physical Systems (pp. 178–219).  https://doi.org/10.1016/B978-1-4832-1447-4.50016-X.CrossRefGoogle Scholar
  6. Freuder, E. C. (1982). A sufficient condition for backtrack-free search. Journal of the ACM.  https://doi.org/10.1145/322290.322292.MathSciNetCrossRefGoogle Scholar
  7. Fu, Z., Lu, Z., Ip, H. H. S., Lu, H., & Wang, Y. (2015). Local similarity learning for pairwise constraint propagation. Multimedia Tools and Applications, 74(11), 3739–3758.  https://doi.org/10.1007/s11042-013-1796-y.CrossRefGoogle Scholar
  8. Guadarrama, S., Muñoz, S., & Vaucheret, C. (2004). Fuzzy prolog: A new approach using soft constraints propagation. Fuzzy Sets and Systems, 144(1), 127–150.  https://doi.org/10.1016/j.fss.2003.10.017.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Hocaoğlu, M. F. (2000). Qualitative constraint propagation in constraint based qualitative simulation. Sakarya University.Google Scholar
  10. Kuhn, H. W., & Tucker, A. (1951). Nonlinear programming. In Proceedings of the Second Symposium on Mathematical Statistics and Probability (Vol. x, pp. 481–492).  https://doi.org/10.1007/BF01582292.MathSciNetCrossRefGoogle Scholar
  11. Kuipers, B. (1994). Qualitative reasoning: Modeling and simulation with incomplete knowledge. New York, Cambridge, Massachusetts: MIT Press.Google Scholar
  12. Kumar, V. (1992). Algorithms for constraint-satisfaction problems: A survey. AI Magazine, 13(1), 32–44. https://doi.org/10.1.1.39.8020.Google Scholar
  13. Mayoh, B., Tyugu, E., & Uustalu, T. (1994). Constraint satisfaction and constraint programming: A brief lead-in (pp. 1–16). Berlin Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-85983-0_1.CrossRefGoogle Scholar
  14. Nait Abdallah, A., & Van Emden, M. H. (2013). Constraint propagation as information maximization. Artificial Intelligence, 197, 25–38.  https://doi.org/10.1016/j.artint.2013.02.002.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Vanderplaats, G. N. (1984). Numerical optimization techniques for engineering design: With applications. McGraw Hill College.Google Scholar
  16. Vescovi, M. R., Lamega, M. M., & Farquhar, A. (1997). Modeling and simulation of a complex industrial process. IEEE Expert, 12(3), 42–46.  https://doi.org/10.1109/64.590073.CrossRefGoogle Scholar
  17. Williams, B. C., & Cagan, J. (1996a). Activity analysis: Simplifying optimal design problems through qualitative partitioning. International Journal of Engineering Optimization, 27, 109–137.CrossRefGoogle Scholar
  18. Williams, B. C., & Cagan, J. (1996b). Activity analysis: The qualitative analysis of stationary points for optimal reasoning. International Journal of Engineering Optimization, 27, 109–137.CrossRefGoogle Scholar
  19. Zheng, J., & Horsch, M. C. (2003). A comparison of consistency propagation algorithms in constraint optimization. In 16th Conference of the Canadian Society for Computational Studies of Intelligence, June 11–13 2003 (Vol. 2671, pp. 160–174).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Industrial Engineering, Faculty of Engineering and Natural SciencesIstanbul Medeniyet UniversityIstanbulTurkey

Personalised recommendations