Protection of Information from Imitation on the Basis of Crypt-Code Structures

  • Dmitry Samoylenko
  • Mikhail Eremeev
  • Oleg FinkoEmail author
  • Sergey Dichenko
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 889)


A system is offered for imitation resistant transmitting of encrypted information in wireless communication networks on the basis of redundant residue polynomial codes. The particular feature of this solution is complexing of methods for cryptographic protection of information and multi-character codes that correct errors, and the resulting structures (crypt-code structures) ensure stable functioning of the information protection system in the conditions simulating the activity of the adversary. Such approach also makes it possible to create multi-dimensional “crypt-code structures” to conduct multi-level monitoring and veracious restoration of distorted encrypted information. The use of authentication codes as a means of one of the levels to detect erroneous blocks in the ciphertext in combination with the redundant residue polynomial codes of deductions makes it possible to decrease the introduced redundancy and find distorted blocks of the ciphertext to restore them.


Cryptographic protection of information Message authentication code Redundant residue polynomial codes Residue number systems 


  1. 1.
    Ferguson, N., Schneier, B.: Applied Cryptography. Wiley, New York (2003)zbMATHGoogle Scholar
  2. 2.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, London (1997)zbMATHGoogle Scholar
  3. 3.
    Knudsen, L.R.: Block chaining modes of operation. Reports in Informatics No. 207, Dept. of Informatics, University of Bergen, Norway (2000). OctoberGoogle Scholar
  4. 4.
    Paar, C., Pelzl, J.: Understanding Cryptography. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Progress Report 42-44, pp. 114–116, JPL, Caltech (1978)Google Scholar
  6. 6.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theory 15(2), 159–166 (1986)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Samokhina, M.A.: Modifications of Niederreiter cryptosystems, its cryptographically strong and practical applications. In: Papers of the Proceedings of Moscow Institute of Physics and Technology, vol. 1(2), 121–128 (2009)Google Scholar
  8. 8.
    van Tilborg, H.: Error-correcting codes and Cryptography. Code-based Cryptography Workshop, Eindhoven (2011). MayGoogle Scholar
  9. 9.
    Petlevannyj, A.A., Finko, O.A., Samoylenko, D.V., Dichenko, S.A.: Device for spoofing resistant coding and decoding information with excessive systematic codes. RU Patent No. 2634201 (2017)Google Scholar
  10. 10.
    Finko, O.A.: Group control of asymmetric cryptosystems using modular arithmetic methods. In: Papers of the XIV Inter. school-seminar “Synthesis and complexity of control systems”, pp. 85–87 (2003)Google Scholar
  11. 11.
    Finko, O.A. Samoylenko, D.V.: Designs that monitor errors based on existing cryptographic standards. In: Papers of the VIII Intern. conf. “Discrete models in the theory of control systems”, pp. 318–320 (2009)Google Scholar
  12. 12.
    Finko, O.A., Dichenko, S.A., Samoylenko, D.V.: Method of secured transmission of encrypted information over communication channels. RU Patent No. 2620730 (2017)Google Scholar
  13. 13.
    Bossen, D.C., Yau, S.S.: Redundant residue polynomial codes. Inf. Control 13(6), 597–618 (1968)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mandelbaum, D.: On efficient burst correcting residue polynomial codes. Inf. Control 16(4), 319–330 (1970)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yu, J-H., Loeliger, H-A.: Redundant Residue Polynomial Codes. In: Papers of the IEEE International Symposium of Inform. Theory Proceed, pp. 1115–1119 (2011)Google Scholar
  16. 16.
    Simmons, G.J.: Authentication theory/coding theory. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology. CRYPTO 1984. Lecture Notes in Computer Science. Springer, Heidelberg (1985)Google Scholar
  17. 17.
    Zubov, A.Y.: Authentication codes. Gelios-ARV, Moscow (2017)Google Scholar
  18. 18.
    Bloch, E.L., Zyablov, B.B.: Generalized Concatenated Codes. Sviaz, Moscow (1976)Google Scholar
  19. 19.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Mathematical Library (1977)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dmitry Samoylenko
    • 1
  • Mikhail Eremeev
    • 2
  • Oleg Finko
    • 3
    Email author
  • Sergey Dichenko
    • 3
  1. 1.Mozhaiskii Military Space AcademySt. PetersburgRussia
  2. 2.Institute a Comprehensive Safety and Special Instrumentation of Moscow Technological UniversityMoscowRussia
  3. 3.Institute of Computer Systems and Information Security of Kuban State Technological UniversityKrasnodarRussia

Personalised recommendations