Blackbox Optimization for Chance Constrained Hydro Scheduling Problems

  • Sara SéguinEmail author
  • Pascal Côté
Conference paper


This paper presents a novel method to treat a chance constrained formulation of the hydropower reservoir management problem. An advantage of this methodology is that it is easily understandable by the decision makers. However, when using explicit optimization methods, the optimal operating policy requires to be simulated over multiple scenarios to validate the feasibility of the constraints. A blackbox optimization framework is used to determine the parameters of the chance constraints, embedding the chance constrained optimization problem and the simulation as the blackbox. Numerical results are conducted on the Kemano hydropower system in Canada.


Hydropower reservoir management Blackbox optimization Chance constrained optimization Stochastic dynamic programming 


  1. 1.
    Finardi, E.C., Scuzziato, M.R.: Hydro unit commitment and loading problem for day-ahead operation planning problem. Int. J. Electr. Power Energy Syst. 44(1), 7–16 (2013)CrossRefGoogle Scholar
  2. 2.
    Pérez-Díaz, J.I., Wilhelmi, J.R., Arévalo, L.A.: Optimal short-term operation schedule of a hydropower plant in a competitive electricity market. Energy Convers. Manag. 51(12), 2955–2966 (2010)CrossRefGoogle Scholar
  3. 3.
    Labadie, J.W.: Optimal operation of multireservoir systems: state-of-the-art review. J. Water Resour. Plan. Manag. 130(2), 93–111 (2004)CrossRefGoogle Scholar
  4. 4.
    Eum, H.-I., Kim, Y.-O.: The value of updating ensemble streamflow prediction in reservoir operations. Hydrological Processes 24(20), 2888–2899 (2010)CrossRefGoogle Scholar
  5. 5.
    Andrieu, L., Henrion, R., Römisch, W.: A model for dynamic chance constraints in hydro power reservoir management. Eur. J. Oper. Res. 207(2), 579–589 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Turgeon, A.: Daily operation of reservoir subject to yearly probabilistic constraints. J. Water Resour. Plan. Manag. 131(5), 342–350 (2005)CrossRefGoogle Scholar
  7. 7.
    Audet, C.: A survey on direct search methods for blackbox optimization and their applications. In: Pardalos, M.P., Rassias, M.T. (eds.) Mathematics Without Boundaries: Surveys in Interdisciplinary Research, pp. 31–56. Springer, New York (2014)Google Scholar
  8. 8.
    Séguin, S., Audet, C., Côté, P.: Scenario-tree modeling for stochastic short-term hydropower operations planning. J. Water Resour. Plan. Manag. 143(12), 04017073 (2017)CrossRefGoogle Scholar
  9. 9.
    Desreumaux, Q., Côté, P., Leconte, R.: Comparing model-based and model-free streamflow simulation approaches to improve hydropower reservoir operations. J. Water Resour. Plan. Manag. 144(3), 05018002 (2018)CrossRefGoogle Scholar
  10. 10.
    Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 44:1–44:15 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université du Québec à ChicoutimiSaguenayCanada
  2. 2.Rio Tinto, Power operationSaguenayCanada

Personalised recommendations