Advertisement

Physical Zero-Knowledge Proof for Makaro

  • Xavier Bultel
  • Jannik Dreier
  • Jean-Guillaume Dumas
  • Pascal Lafourcade
  • Daiki Miyahara
  • Takaaki Mizuki
  • Atsuki Nagao
  • Tatsuya Sasaki
  • Kazumasa ShinagawaEmail author
  • Hideaki Sone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11201)

Abstract

Makaro is a logic game similar to Sudoku. In Makaro, a grid has to be filled with numbers such that: given areas contain all the numbers up to the number of cells in the area, no adjacent numbers are equal and some cells provide restrictions on the largest adjacent number. We propose a proven secure physical algorithm, only relying on cards, to realize a zero-knowledge proof of knowledge for Makaro. It allows a player to show that he knows a solution without revealing it.

Keywords

Zero-knowledge proofs Card-based secure two-party protocols Puzzle Makaro Privacy 

Notes

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Numbers 17J01169 and 17K00001. It was conducted with the support of the FEDER program of 2014-2020, the region council of Auvergne-Rhône-Alpes, the Indo-French Centre for the Promotion of Advanced Research (IFCPAR) and the Center Franco-Indien Pour La Promotion De La Recherche Avancée (CEFIPRA) through the project DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme.

References

  1. 1.
    Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation using a PEZ dispenser. Theor. Comput. Sci. 306(1–3), 69–84 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Demaine, E.D., Grandoni, F. (eds.) 8th International Conference on Fun with Algorithms, FUN 2016. LIPIcs, La Maddalena, Italy, 8–10 June 2016, vol. 49, pp. 8:1–8:20 (2016)Google Scholar
  3. 3.
    Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 102–112. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13122-6_12CrossRefGoogle Scholar
  4. 4.
    Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_18CrossRefGoogle Scholar
  5. 5.
    Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48329-2_27CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_4CrossRefGoogle Scholar
  7. 7.
    Demaine, E.D.: Playing games with algorithms: algorithmic combinatorial game theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 18–33. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44683-4_3CrossRefGoogle Scholar
  8. 8.
    Boer, B.: More efficient match-making and satisfiability the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-46885-4_23CrossRefGoogle Scholar
  9. 9.
    Foresti, S., Persiano, G. (eds.): Cryptology and Network Security - 15th International Conference, CANS 2016, Milan, Italy, 14–16 November 2016, Proceedings. LNCS, vol. 10052. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48965-0CrossRefzbMATHGoogle Scholar
  10. 10.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 174–187, October 1986Google Scholar
  11. 11.
    Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in zero-knowledge and a methodology of cryptographic protocol design (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_11CrossRefGoogle Scholar
  12. 12.
    Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 166–182. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72914-3_16CrossRefGoogle Scholar
  13. 13.
    Hanaoka, G.: Towards user-friendly cryptography. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 481–484. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61273-7_24CrossRefGoogle Scholar
  14. 14.
    Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol using a deck of cards. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 135–152. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72089-0_8CrossRefGoogle Scholar
  15. 15.
    Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A. K. Peters Ltd., Natick (2009)zbMATHGoogle Scholar
  16. 16.
    Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation without fixed points. In: 2016 Third International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), pp. 252–257, August 2016Google Scholar
  17. 17.
    Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21819-9_16CrossRefGoogle Scholar
  18. 18.
    Ito, H., Leonardi, S., Pagli, L., Prencipe, G. (eds.) 9th International Conference on Fun with Algorithms, FUN 2018. LIPIcs, La Maddalena, Italy, vol. 100. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, June 2018Google Scholar
  19. 19.
    Iwamoto, C., Haruishi, M., Ibusuki, T.: Herugolf and Makaro are NP-complete. In: Ito et al. [18], pp. 24:1–24:11Google Scholar
  20. 20.
    Kastner, J., et al.: The minimum number of cards in practical card-based protocols. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70700-6_5CrossRefGoogle Scholar
  21. 21.
    Kendall, G., Parkes, A.J., Spoerer, K.: A survey of NP-complete puzzles. ICGA J. 31(1), 13–34 (2008)CrossRefGoogle Scholar
  22. 22.
    Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_32CrossRefGoogle Scholar
  23. 23.
    Mizuki, T.: Efficient and secure multiparty computations using a standard deck of playing cards. In: Foresti and Persiano [9], pp. 484–499CrossRefGoogle Scholar
  24. 24.
    Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using a dial lock. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 499–510. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72504-6_45CrossRefGoogle Scholar
  25. 25.
    Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using the 15 puzzle. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 255–266. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73556-4_28CrossRefGoogle Scholar
  26. 26.
    Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–606. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_36CrossRefGoogle Scholar
  27. 27.
    Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02270-8_36CrossRefGoogle Scholar
  28. 28.
    Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 285–297. Springer, Heidelberg (2005).  https://doi.org/10.1007/11523468_24CrossRefGoogle Scholar
  29. 29.
    Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Foresti and Persiano [9], pp. 500–517CrossRefGoogle Scholar
  30. 30.
    Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci. 191(1), 173–183 (1998)MathSciNetCrossRefGoogle Scholar
  31. 31.
  32. 32.
    Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with eight cards. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45008-2_16CrossRefGoogle Scholar
  33. 33.
    Ramzy, I., Arora, A.: Using zero knowledge to share a little knowledge: bootstrapping trust in device networks. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 371–385. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24550-3_28CrossRefGoogle Scholar
  34. 34.
    Romero-Tris, C., Castellà-Roca, J., Viejo, A.: Multi-party private web search with untrusted partners. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm 2011. LNICST, vol. 96, pp. 261–280. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31909-9_15CrossRefGoogle Scholar
  35. 35.
    Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for Sudoku. In: Ito et al. [18], pp. 29:1–29:10Google Scholar
  36. 36.
    Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Shinagawa, K., et al.: Secure computation protocols using polarizing cards. IEICE Trans. 99-A(6), 1122–1131 (2016)CrossRefGoogle Scholar
  38. 38.
    Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE Trans. 100-A(9), 1900–1909 (2017)CrossRefGoogle Scholar
  39. 39.
    Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1), 671–678 (2001)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a random bisection cut. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49001-4_5CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Xavier Bultel
    • 1
  • Jannik Dreier
    • 2
  • Jean-Guillaume Dumas
    • 3
  • Pascal Lafourcade
    • 4
  • Daiki Miyahara
    • 5
    • 6
  • Takaaki Mizuki
    • 5
  • Atsuki Nagao
    • 7
  • Tatsuya Sasaki
    • 5
  • Kazumasa Shinagawa
    • 6
    • 8
    Email author
  • Hideaki Sone
    • 5
  1. 1.University of Rennes 1, IRISARennesFrance
  2. 2.Université de Lorraine, CNRS, Inria, LORIANancyFrance
  3. 3.Université Grenoble Alpes, IMAG-LJK, CNRS UMR 5224GrenobleFrance
  4. 4.University Clermont Auvergne, LIMOS, CNRS UMR 6158AubièreFrance
  5. 5.Tohoku UniversitySendaiJapan
  6. 6.National Institute of Advanced Industrial Science and TechnologyKōtōJapan
  7. 7.Ochanomizu UniversityBunkyōJapan
  8. 8.Tokyo Institute of TechnologyMeguroJapan

Personalised recommendations