Advertisement

Brief Announcement Continuous vs. Discrete Asynchronous Moves: A Certified Approach for Mobile Robots

  • Thibaut Balabonski
  • Pierre Courtieu
  • Robin Pelle
  • Lionel Rieg
  • Sébastien Tixeuil
  • Xavier UrbainEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11201)

Abstract

Networks of mobile robots captured the attention of the distributed computing community, as they promise new application (rescue, exploration, surveillance) in potentially harmful environments.

References

  1. 1.
    Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for Byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03089-0_13CrossRefGoogle Scholar
  2. 2.
    Balabonski, T., Courtieu, P., Pelle, R., Rieg, L., Tixeuil, S., Urbain, X.: Continuous vs. discrete asynchronous moves: a certified approach for mobile robots. Research report, Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, Paris, France (2018)Google Scholar
  3. 3.
    Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering without multiplicity detection: a certified algorithm. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 7–19. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49259-9_2CrossRefGoogle Scholar
  4. 4.
    Balabonski, T., Pelle, R., Rieg, L., Tixeuil, S.: A foundational framework for certified impossibility results with mobile robots on graphs. In: Proceedings of International Conference on Distributed Computing and Networking, Varanasi, India, January 2018Google Scholar
  5. 5.
    Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y., Tixeuil, S.: Formal verification of mobile robot protocols. Distrib. Comput. 29(6), 459–487 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blin, L., Burman, J., Nisse, N.: Exclusive graph searching. Algorithmica 77(3), 942–969 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15763-9_29CrossRefGoogle Scholar
  8. 8.
    Bonnet, F., Potop-Butucaru, M., Tixeuil, S.: Asynchronous gathering in rings with 4 robots. In: Mitton, N., Loscri, V., Mouradian, A. (eds.) ADHOC-NOW 2016. LNCS, vol. 9724, pp. 311–324. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40509-4_22CrossRefGoogle Scholar
  9. 9.
    Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discovering and assessing fine-grained metrics in robot networks protocols. In: 33rd IEEE International Symposium on Reliable Distributed Systems Workshops, SRDS Workshops 2014, 6–9 October 2014, Nara, Japan, pp. 50–59. IEEE (2014)Google Scholar
  10. 10.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certification. Inf. Process. Lett. 115, 447–452 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in \(\mathbb{R} ^2\) for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 187–200. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53426-7_14CrossRefGoogle Scholar
  13. 13.
    D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclusive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4), 1055–1096 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid exploration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33536-5_7CrossRefGoogle Scholar
  16. 16.
    Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-synchronous oblivious robots. Theor. Comput. Sci. 498, 10–27 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots perpetual exploration algorithm. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.) SOFL+MSVL 2016. LNCS, vol. 10189, pp. 201–219. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57708-1_12CrossRefGoogle Scholar
  18. 18.
    Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of robot gathering. In: Aspnes, J., Felber, P. (eds.) Principles of Distributed Systems - 21th International Conference (OPODIS 2017), Leibniz International Proceedings in Informatics (LIPIcs), Lisbon, Portugal. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, December 2017Google Scholar
  19. 19.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3), 562–583 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, San Rafael (2012)zbMATHGoogle Scholar
  21. 21.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3), 412–447 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gathering from symmetric configurations without global multiplicity detection. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22212-2_14CrossRefGoogle Scholar
  23. 23.
    Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of robots in an odd ring without global multiplicity detection. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32589-2_48CrossRefzbMATHGoogle Scholar
  24. 24.
    Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 237–251. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11764-5_17CrossRefGoogle Scholar
  25. 25.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sangnier, A., Sznajder, N., Potop-Butucaru, M., Tixeuil, S.: Parameterized verification of algorithms for oblivious robots on a ring. In: Formal Methods in Computer Aided Design, Vienna, Austria (2017)Google Scholar
  27. 27.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots in the three-dimensional Euclidean space. J. ACM 64(3), 16:1–16:43 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Thibaut Balabonski
    • 1
  • Pierre Courtieu
    • 2
  • Robin Pelle
    • 1
  • Lionel Rieg
    • 3
  • Sébastien Tixeuil
    • 4
    • 5
  • Xavier Urbain
    • 6
    Email author
  1. 1.LRI, CNRS UMR 8623, Université Paris-Sud, Université Paris-SaclayParisFrance
  2. 2.CÉDRIC – Conservatoire National des Arts et MétiersParisFrance
  3. 3.Yale UniversityNew HavenUSA
  4. 4.Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6ParisFrance
  5. 5.Institut Universitaire de FranceParisFrance
  6. 6.Université Claude Bernard Lyon-1, LIRIS CNRS UMR 5205, Université de LyonLyonFrance

Personalised recommendations