Self-stabilizing Overlays for High-Dimensional Monotonic Searchability

  • Michael FeldmannEmail author
  • Christina Kolb
  • Christian Scheideler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11201)


We extend the concept of monotonic searchability [17, 18] for self-stabilizing systems from one to multiple dimensions. A system is self-stabilizing if it can recover to a legitimate state from any initial illegal state. These kind of systems are most often used in distributed applications. Monotonic searchability provides guarantees when searching for nodes while the recovery process is going on. More precisely, if a search request started at some node u succeeds in reaching its destination v, then all future search requests from u to v succeed as well. Although there already exists a self-stabilizing protocol for a two-dimensional topology [10] and an universal approach for monotonic searchability [18], it is not clear how both of these concepts fit together effectively. The latter concept even comes with some restrictive assumptions on messages, which is not the case for our protocol. We propose a simple novel protocol for a self-stabilizing two-dimensional quadtree that satisfies monotonic searchability. Our protocol can easily be extended to higher dimensions and offers routing in \(\mathcal O(\log n)\) hops for any search request.


Distributed systems Topological self-stabilization Monotonic searchability Quadtrees Octtrees 


  1. 1.
    Aluru, S.: Quadtrees and octrees. In: Mehta, D.P., Sahni, S. (eds.) Handbook of Data Structures and Applications. Chapman and Hall/CRC, Boca Raton (2004). Scholar
  2. 2.
    Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: a self-stabilizing deterministic skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRefGoogle Scholar
  5. 5.
    Feldmann, M., Kolb, C., Scheideler, C.: Self-stabilizing overlays for high-dimensional monotonic searchability. CoRR abs/1808.10300 (2018).
  6. 6.
    Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta Inf. 4, 1–9 (1974). Scholar
  7. 7.
    Gall, D., Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: A note on the parallel runtime of self-stabilizing graph linearization. Theory Comput. Syst. 55(1), 110–135 (2014). Scholar
  8. 8.
    Gao, J., Guibas, L.J., Hershberger, J., Zhang, L.: Fractionally cascaded information in a sensor network. In: IPSN, pp. 311–319 (2004).
  9. 9.
    Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: PODC, pp. 131–140. ACM (2009)Google Scholar
  10. 10.
    Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: Towards higher-dimensional topological self-stabilization: a distributed algorithm for delaunay graphs. Theor. Comput. Sci. 457, 137–148 (2012). Scholar
  11. 11.
    Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing chord overlay network. Theory Comput. Syst. 55(3), 591–612 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Morton, G.: A computer oriented geodetic data base and a new technique in file sequencing. In: International Business Machines Company (1966).
  13. 13.
    Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: a stabilizing deterministic message-passing skip list. Theor. Comput. Sci. 512, 119–129 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Onus, M., Richa, A.W., Scheideler, C.: Linearization: locally self-stabilizing sorting in graphs. In: ALENEX 2007. SIAM (2007)Google Scholar
  15. 15.
    Richa, A., Scheideler, C., Stevens, P.: Self-stabilizing De Bruijn networks. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 416–430. Springer, Heidelberg (2011). Scholar
  16. 16.
    Samet, H.: Hierarchical spatial data structures. In: Buchmann, A.P., Günther, O., Smith, T.R., Wang, Y.-F. (eds.) SSD 1989. LNCS, vol. 409, pp. 191–212. Springer, Heidelberg (1990). Scholar
  17. 17.
    Scheideler, C., Setzer, A., Strothmann, T.: Towards establishing monotonic searchability in self-stabilizing data structures. In: OPODIS, pp. 24:1–24:17 (2015).
  18. 18.
    Scheideler, C., Setzer, A., Strothmann, T.: Towards a universal approach for monotonic searchability in self-stabilizing overlay networks. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 71–84. Springer, Heidelberg (2016). Scholar
  19. 19.
    Tanin, E., Harwood, A., Samet, H.: Using a distributed quadtree index in peer-to-peer networks. VLDB J. 16(2), 165–178 (2007). Scholar
  20. 20.
    Yamauchi, Y., Tixeuil, S.: Monotonic stabilization. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 475–490. Springer, Heidelberg (2010). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Michael Feldmann
    • 1
    Email author
  • Christina Kolb
    • 1
  • Christian Scheideler
    • 1
  1. 1.Paderborn UniversityPaderbornGermany

Personalised recommendations