Advertisement

Metal-Enhanced Singlet Oxygen Production

  • Mikkel BregnhøjEmail author
Chapter
  • 167 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Metal nanoparticles are an omnipresent source of interesting optical phenomena [1]. It has been known since before the Middle Ages that gold nanoparticle suspensions in glass can color the windows of a cathedral in almost all the colors of the rainbow [2]. Faraday was the first to scientifically investigate this phenomenon in the 18th century [3], but a deeper understanding of the optical behavior of nano-particles was first achieved when Mie solved Maxwell’s equations for a spherical particle in 1908 [4].

References

  1. 1.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, Hoboken (2008)Google Scholar
  2. 2.
    Garnett, J.C.M.: Colours in metal glasses, in metallic films, and in metallic solutions. II. Phil. Trans. R. Soc. Lond. A 205, 237–288 (1906)Google Scholar
  3. 3.
    Faraday, M.: The Bakerian lecture: experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. Lond. 147, 145–181 (1857)CrossRefGoogle Scholar
  4. 4.
    Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. (Berlin) 330, 377–445 (1908)CrossRefGoogle Scholar
  5. 5.
    Fleischmann, M., Hendra, P.J., McQuillan, A.J.: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)CrossRefGoogle Scholar
  6. 6.
    Jeanmaire, D.L., Van Duyne, R.P.: Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interf Electrochem. 84, 1–20 (1977)CrossRefGoogle Scholar
  7. 7.
    Albrecht, M.G., Creighton, J.A.: Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)CrossRefGoogle Scholar
  8. 8.
    Geddes, C. D.: Surface Plasmon Enhanced, Coupled and Controlled Fluorescence. Wiley, Hoboken (2017)Google Scholar
  9. 9.
    Gruenke, N.L., et al.: Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 45, 2263–2290 (2016)CrossRefGoogle Scholar
  10. 10.
    Lakowicz, J.R.: Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171–194 (2005)CrossRefGoogle Scholar
  11. 11.
    Pribik, R., Dragan, A.I., Zhang, Y., Gaydos, C., Geddes, C.D.: Metal-Enhanced Fluorescence (MEF): Physical characterization of Silver-island films and exploring sample geometries. Chem. Phys. Lett. 478, 70–74 (2009)CrossRefGoogle Scholar
  12. 12.
    Fort, E., Grésillon, S.: Surface enhanced fluorescence. J. Phys. D 41, 13001–13032 (2008)CrossRefGoogle Scholar
  13. 13.
    Previte, M.J., Aslan, K., Zhang, Y., Geddes, C.D.: Metal-enhanced surface plasmon-coupled phosphorescence. J. Phys. Chem. C 111, 6051–6059 (2007)CrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Aslan, K., Malyn, S.N., Geddes, C.D.: Metal-enhanced phosphorescence (MEP). Chem. Phys. Lett. 427, 432–437 (2006)CrossRefGoogle Scholar
  15. 15.
    Mishra, H., Mali, B.L., Karolin, J., Dragan, A.I., Geddes, C.D.: Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system. Phys. Chem. Chem. Phys. 15, 19538–19544 (2013)CrossRefGoogle Scholar
  16. 16.
    Willets, K.A., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Fu, Y., Chowdhury, M.H., Lakowicz, J.R.: Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett. 7, 2101–2107 (2007)CrossRefGoogle Scholar
  18. 18.
    Lu, C., Prasad, K.S., Wu, H., Ho, J.A., Huang, M.H.: Au nanocube-directed fabrication of Au − Pd core − shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. J. Am. Chem. Soc. 132, 14546–14553 (2010)CrossRefGoogle Scholar
  19. 19.
    Kumar, P.S., Pastoriza-Santos, I., Rodriguez-Gonzalez, B., de García Abajo, F.J., de Marzan, L.M.: High-yield synthesis and optical response of gold nanostars. Nanotechnology 19, 015606 (2008)CrossRefGoogle Scholar
  20. 20.
    Wang, H., Brandl, D., Le, F., Nordlander, P., Halas, N.J.: Nanorice particles: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2010)CrossRefGoogle Scholar
  21. 21.
    Scaiano, J.C., Stamplecoskie, K.: Can surface plasmon fields provide a new way to photosensitize organic photoreactions? From designer nanoparticles to custom applications. J. Phys. Chem. Lett. 4, 1177–1187 (2013)CrossRefGoogle Scholar
  22. 22.
    Macia, N., Heyne, B.: Using photochemistry to understand and control the production of reactive oxygen species in biological environments. J. Photochem. Photobiol., A 306, 1–12 (2015)CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Aslan, K., Previte, M.J., Geddes, C.D.: Plasmonic engineering of singlet oxygen generation. Proc. Natl. Acad. Sci. USA 105, 1798–1802 (2008)CrossRefGoogle Scholar
  24. 24.
    Ragas, X., et al.: Singlet oxygen phosphorescence enhancement by silver islands films. J. Phys. Chem. C 115, 16275–16281 (2011)CrossRefGoogle Scholar
  25. 25.
    Planas, O. et al.: Newest approaches to singlet oxygen photosensitisation in biological media. Photochemistry, 233–278 (2014)Google Scholar
  26. 26.
    Planas, O., Macia, N., Agut, M., Nonell, S., Heyne, B.: Distance-dependent plasmon-enhanced singlet oxygen production and emission for bacterial inactivation. J. Am. Chem. Soc. 138, 2762–2768 (2016)CrossRefGoogle Scholar
  27. 27.
    Ferreira, D.C., et al.: Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy. Colloids Surf. B 150, 297–307 (2016)CrossRefGoogle Scholar
  28. 28.
    Gao, L., et al.: Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 8, 7260–7271 (2014)CrossRefGoogle Scholar
  29. 29.
    Wang, S., Gao, R., Zhou, F., Selke, M.: Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J. Mat. Chem. 14, 487–493 (2004)CrossRefGoogle Scholar
  30. 30.
    Toftegaard, R., et al.: Metal-Enhanced 1270 nm Singlet Oxygen Phosphorescence. Angew. Chem. Int. Ed. 120, 6114–6116 (2008)CrossRefGoogle Scholar
  31. 31.
    Toftegaard, R., et al.: Metal nanoparticle-enhanced radiative transitions: giving singlet oxygen emission a boost. Pure Appl. Chem. 83, 885–898 (2011)CrossRefGoogle Scholar
  32. 32.
    Henry, A., et al.: Correlated structure and optical property studies of plasmonic nanoparticles. J. Phys. Chem. C 115, 9291–9305 (2011)CrossRefGoogle Scholar
  33. 33.
    El-Sayed, M.A.: Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001)CrossRefGoogle Scholar
  34. 34.
    Eustis, S., El-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006)CrossRefGoogle Scholar
  35. 35.
    Pelton, M., Aizpurua, J., Bryant, G.: Metal-nanoparticle plasmonics. Laser Photon. Rev. 2, 136–159 (2008)CrossRefGoogle Scholar
  36. 36.
    Chen, Y., Munechika, K., Ginger, D.S.: Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690–696 (2007)CrossRefGoogle Scholar
  37. 37.
    Yang, W., Schatz, G.C., Van Duyne, R.P.: Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys. 103, 869–875 (1995)CrossRefGoogle Scholar
  38. 38.
    Draine, B.T., Flatau, P.J.: Discrete-dipole approximation for periodic targets: theory and tests. J. Opt. Soc. Am. A 25, 2693–2703 (2008)CrossRefGoogle Scholar
  39. 39.
    Yurkin, M.A., Min, M., Hoekstra, A.G.: Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived. Phys. Rev. E 82, 036703 (2010)CrossRefGoogle Scholar
  40. 40.
    Prescott, S.W., Mulvaney, P.: Gold nanorod extinction spectra. J. Appl. Phys. 99, 123504 (2006)CrossRefGoogle Scholar
  41. 41.
    He, G.S., et al.: Scattering and absorption cross-section spectral measurements of gold nanorods in water. J. Phys. Chem. C 114, 2853–2860 (2010)CrossRefGoogle Scholar
  42. 42.
    Park, K., Biswas, S., Kanel, S., Nepal, D., Vaia, R.A.: Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section. J. Phys. Chem. C 118, 5918–5926 (2014)CrossRefGoogle Scholar
  43. 43.
    Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L.M., Mulvaney, P.: Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 249, 1870–1901 (2005)CrossRefGoogle Scholar
  44. 44.
    Mortier, T., Persoons, A., Verbiest, T.: Two-step synthesis of high aspect ratio gold nanorods. Cent. Eur. J. Chem. 4, 160–165 (2006)Google Scholar
  45. 45.
    Huang, X., Neretina, S., El-Sayed, M.A.: Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 21, 4880–4910 (2009)CrossRefGoogle Scholar
  46. 46.
    Scarabelli, L., Sánchez-Iglesias, A., Pérez-Juste, J., Liz-Marzán, L.M.: A “tips ’n tricks” practical guide to the synthesis of gold nanorods. J. Phys. Chem. Lett. 6, 4270–4279 (2015)CrossRefGoogle Scholar
  47. 47.
    Lee, K., El-Sayed, M.A.: Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J. Phys. Chem. B 109, 20331–20338 (2005)CrossRefGoogle Scholar
  48. 48.
    Draine, B.T., Flatau, P.J.: User guide for the discrete dipole approximation code DDSCAT 7.3 (2013)Google Scholar
  49. 49.
    Chandrasekhar, S.: Radiative transfer. Courier Corporation (1960)Google Scholar
  50. 50.
    Liou, K.: An Introduction to Atmospheric Radiation. Academic press, Cambridge (2002)Google Scholar
  51. 51.
    Cheong, W., Prahl, S.A., Welch, A.J.: A review of the optical properties of biological tissues. IEEE J. Quant. Electron. 26, 2166–2185 (1990)CrossRefGoogle Scholar
  52. 52.
    Chadwick, S.J., Salah, D., Livesey, P.M., Brust, M., Volk, M.: Singlet oxygen generation by laser irradiation of gold nanoparticles. J. Phys. Chem. C 120, 10647–10657 (2016)CrossRefGoogle Scholar
  53. 53.
    Huang, Y., et al.: Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. 53, 2353–2357 (2014)CrossRefGoogle Scholar
  54. 54.
    Vankayala, R., Sagadevan, A., Vijayaraghavan, P., Kuo, C., Hwang, K.C.: Metal nanoparticles sensitize the formation of singlet oxygen. Angew. Chem. Int. Ed. 50, 10640–10644 (2011)CrossRefGoogle Scholar
  55. 55.
    Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Physicists. Springer (1971)Google Scholar
  56. 56.
    Lakowicz, J.R.: Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 298, 1–24 (2001)CrossRefGoogle Scholar
  57. 57.
    Mooi, S.M., Heyne, B.: Amplified production of singlet oxygen in aqueous solution using metal enhancement effects. Photochem. Photobiol. 90, 85–91 (2013)CrossRefGoogle Scholar
  58. 58.
    de Melo, L.S., et al.: Singlet oxygen generation enhanced by silver-pectin nanoparticles. J. Fluoresc. 22, 1633–1638 (2012)CrossRefGoogle Scholar
  59. 59.
    Clement, S., Sobhan, M., Deng, W., Camilleri, E., Goldys, E.M.: Nanoparticle-mediated singlet oxygen generation from photosensitizers. J. Photochem. Photobiol., A 332, 66–71 (2017)CrossRefGoogle Scholar
  60. 60.
    Rivas Aiello, M.B., Romero, J.J., Bertolotti, S.G., Gonzalez, M.C., Mártire, D.O. Effect of silver nanoparticles on the photophysics of riboflavin: consequences on the ROS generation. J. Phys. Chem. C 120, 21967–21975 (2016)CrossRefGoogle Scholar
  61. 61.
    Lismont, M., Dreesen, L., Heinrichs, B., Páez, C.A.: Protoporphyrin IX-Functionalized AgSiO2 Core-Shell Nanoparticles: Plasmonic Enhancement of Fluorescence and Singlet Oxygen Production. Photochem. Photobiol. 92, 247–256 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryAarhus UniversityAarhusDenmark

Personalised recommendations