Temperature Effects on the Lifetime of O2(a1Δg)

  • Mikkel BregnhøjEmail author
Part of the Springer Theses book series (Springer Theses)


The non-radiative deactivation of O2(a1g) and O2(\({\text{b}}^{1}\Sigma _{\text{g}}^{{^{ + } }}\)) by solvent molecules has been a topic of intense and extensive research for almost half a century [1, 2, 3, 4, 5, 6]. The seminal interest derived in part from an unusually large effect of solvent and solvent deuteration on the lifetime of O2(a1g) [3, 7].


  1. 1.
    Merkel, P.B., Kearns, D.R.: Radiationless decay of singlet molecular oxygen in solution. Experimental and theoretical study of electronic-to-vibrational energy transfer. J. Am. Chem. Soc. 94, 7244–7253 (1972)CrossRefGoogle Scholar
  2. 2.
    Peters, G., Rodgers, M.: Time-resolved determinations of deuterium isotope effects on O2(1g) lifetimes in solution. J. Am. Chem. Soc. 103, 6759–6761 (1981)CrossRefGoogle Scholar
  3. 3.
    Ogilby, P.R., Foote, C.S.: Chemistry of singlet oxygen. 34. Unexpected solvent deuterium isotope effects on the lifetime of singlet molecular oxygen (1Δg). J. Am. Chem. Soc. 103, 1219–1221 (1981)CrossRefGoogle Scholar
  4. 4.
    Hurst, J.R., Schuster, G.B.: Nonradiative relaxation of singlet oxygen in solution. J. Am. Chem. Soc. 105, 5756–5760 (1983)CrossRefGoogle Scholar
  5. 5.
    Schmidt, R., Brauer, H.: Radiationless deactivation of singlet oxygen (1Δg) by solvent molecules. J. Am. Chem. Soc. 109, 6976–6981 (1987)CrossRefGoogle Scholar
  6. 6.
    Schweitzer, C., Schmidt, R.: Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1758 (2003)CrossRefGoogle Scholar
  7. 7.
    Ogilby, P.R., Foote, C.S.: Chemistry of singlet oxygen. 42. Effect of solvent, solvent isotopic substitution, and temperature on the lifetime of singlet molecular oxygen (1Δg). J. Am. Chem. Soc. 105, 3423–3430 (1983)CrossRefGoogle Scholar
  8. 8.
    Wilkinson, F., Brummer, J.G.: Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 10, 809–999 (1981)CrossRefGoogle Scholar
  9. 9.
    Khan, A.U., Kasha, M.: Direct spectroscopic observation of singlet oxygen emission at 1268 nm excited by sensitizing dyes of biological interest in liquid solution. Proc. Natl. Acad. Sci. U. S. A. 76, 6047–6049 (1979)CrossRefGoogle Scholar
  10. 10.
    Krasnovskii, A.A.: Photosensitized luminescence of singlet oxygen in solution. Biofizika 21, 748–749 (1976)PubMedGoogle Scholar
  11. 11.
    Schmidt, R., Afshari, E.: Collisional deactivation of O2(1Δg) by solvent molecules. Comparative experiments with 16O2 and 18O2. Ber. Bunsen. Phys. Chem 96, 788–794 (1992)Google Scholar
  12. 12.
    Schmidt, R., Bodesheim, M.: Radiationless deactivation of the second excited singlet state 1Σg+ of O2 in solution. J. Phys. Chem. A 102, 4769–4774 (1998)CrossRefGoogle Scholar
  13. 13.
    Wang, B., Ogilby, P.R.: Quenching of b1Σg+ oxygen in solution. J. Phys. Chem. 97, 193–195 (1993)CrossRefGoogle Scholar
  14. 14.
    Jensen, R.L., Arnbjerg, J., Ogilby, P.R.: Temperature effects on the solvent-dependent deactivation of singlet oxygen. J. Am. Chem. Soc. 132, 8098–8105 (2010)CrossRefGoogle Scholar
  15. 15.
    Bregnhøj, M., Westberg, M., Jensen, F., Ogilby, P.R.: Solvent-dependent singlet oxygen lifetimes: temperature effects implicate tunneling and charge-transfer interactions. Phys. Chem. Chem. Phys. 18, 22946–22961 (2016)CrossRefGoogle Scholar
  16. 16.
    Wilkinson, F., Helman, W.P., Ross, A.B.: Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data 24, 663–677 (1995)CrossRefGoogle Scholar
  17. 17.
    Rodgers, M.A.: Solvent-induced deactivation of singlet oxygen: additivity relationships in nonaromatic solvents. J. Am. Chem. Soc. 105, 6201–6205 (1983)CrossRefGoogle Scholar
  18. 18.
    Hild, M., Schmidt, R.: The mechanism of the collision-induced enhancement of the a1Δg → X3Σg and b1Σg+ → a1Δg radiative transitions of O2. J. Phys. Chem. A 103, 6091–6096 (1999)CrossRefGoogle Scholar
  19. 19.
    Choppin, G.R.: Studies of the hydrogen bonded structures of water and methanol. J. Mol. Struct. 45, 39–54 (1978)CrossRefGoogle Scholar
  20. 20.
    Langford, V.S., McKinley, A.J., Quickenden, T.I.: Temperature dependence of the visible-near-infrared absorption spectrum of liquid water. J. Phys. Chem. A 105, 8916–8921 (2001)CrossRefGoogle Scholar
  21. 21.
    Libnau, F., Toft, J., Christy, A., Kvalheim, O.: Structure of liquid water determined from infrared temperature profiling and evolutionary curve resolution. J. Am. Chem. Soc. 116, 8311–8316 (1994)CrossRefGoogle Scholar
  22. 22.
    Libnau, F.O., Kvalheim, O.M., Christy, A.A., Toft, J.: Spectra of water in the near-and mid-infrared region. Vib. Spectrosc. 7, 243–254 (1994)CrossRefGoogle Scholar
  23. 23.
    Šašić, S., Segtnan, V., Ozaki, Y.: Self-modeling curve resolution study of temperature-dependent near-infrared spectra of water and the investigation of water structure. J. Phys. Chem. A 106, 760–766 (2002)CrossRefGoogle Scholar
  24. 24.
    Reddy, K., Heller, D.F., Berry, M.J.: Highly vibrationally excited benzene: Overtone spectroscopy and intramolecular dynamics of C6H6, C6D6, and partially deuterated or substituted benzenes. J. Chem. Phys. 76, 2814–2837 (1982)CrossRefGoogle Scholar
  25. 25.
    Worrall, D.R., Abdel-Shafi, A.A., Wilkinson, F.: Factors affecting the rate of decay of the first excited singlet state of molecular oxygen O2(a1Δg) in supercritical fluid carbon dioxide. J. Phys. Chem. A 105, 1270–1276 (2001)CrossRefGoogle Scholar
  26. 26.
    Abdel-Shafi, A.A., Wilkinson, F., Worrall, D.R.: Photosensitised production of singlet oxygen, O2(a1Δg), in the uniqueheavy-atom solvent, supercritical fluid xenon. Pressure dependence of electronic to vibrational energy conversion during quenching of O2(a1Δg) by xenon and by ground state oxygen. Chem. Phys. Lett. 343, 273–280 (2001)CrossRefGoogle Scholar
  27. 27.
    Abdel-Shafi, A.A., Worrall, D.R.: Photosensitized production of singlet oxygen and factors governing its decay in xenon and carbon dioxide supercritical fluids. J. Photochem. Photobiol., A 186, 263–269 (2007)CrossRefGoogle Scholar
  28. 28.
    Arai, Y., Sako, T., Takebayashi, Y.: Supercritical Fluids: Molecular Interactions, Physical Properties And New Applications. Springer Science & Business Media (2013)Google Scholar
  29. 29.
    Sun, Y., Fox, M.A.: Fluorescence of 9-cyanoanthracene in supercritical ethane. A very unusual dependence of fluorescence lifetime on solvent refractive index. J. Phys. Chem. 97, 282–283 (1993)CrossRefGoogle Scholar
  30. 30.
    Włodarczyk, J., Kierdaszuk, B.: Interpretation of fluorescence decays using a power-like model. Biophys. J. 85, 589–598 (2003)CrossRefGoogle Scholar
  31. 31.
    Laidler, K.J.: Chemical Kinetics. McGraw-Hill (1977)Google Scholar
  32. 32.
    Gorman, A., Hamblett, I., Lambert, C., Spencer, B., Standen, M.: Identification of both preequilibrium and diffusion limits for reaction of singlet oxygen, O2(a1g), with both physical and chemical quenchers: variable-temperature, time-resolved infrared luminescence studies. J. Am. Chem. Soc. 110, 8053–8059 (1988)CrossRefGoogle Scholar
  33. 33.
    Laidler, K.J.: The development of the Arrhenius equation. J. Chem. Educ. 61, 494 (1984)CrossRefGoogle Scholar
  34. 34.
    Arrhenius, S.: Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4, 226–248 (1889)Google Scholar
  35. 35.
    Hulett, J.: Deviations from the Arrhenius equation. Chem. Soc. Rev. 18, 227–242 (1964)CrossRefGoogle Scholar
  36. 36.
    Aquilanti, V., Mundim, K.C., Elango, M., Kleijn, S., Kasai, T.: Temperature dependence of chemical and biophysical rate processes: phenomenological approach to deviations from Arrhenius law. Chem. Phys. Lett. 498, 209–213 (2010)CrossRefGoogle Scholar
  37. 37.
    Truhlar, D.G., Garrett, B.C., Klippenstein, S.J.: Current status of transition-state theory. J. Phys. Chem. 100, 12771–12800 (1996)CrossRefGoogle Scholar
  38. 38.
    Hurst, J.R., Wilson, S.L., Schuster, G.B.: The ene reaction of singlet oxygen: kinetic and product evidence in support of a perepoxide intermediate. Tetrahedron 41, 2191–2197 (1985)CrossRefGoogle Scholar
  39. 39.
    Bisby, R.H., Morgan, C.G., Hamblett, I., Gorman, A.A.: Quenching of singlet oxygen by Trolox C, ascorbate, and amino acids: effects of pH and temperature. J. Phys. Chem. A 103, 7454–7459 (1999)CrossRefGoogle Scholar
  40. 40.
    Gorman, A.A., Gould, I., Hamblett, I., Standen, M.: Reversible exciplex formation between singlet oxygen, 1g, and vitamin E. Solvent and temperature effects. J. Am. Chem. Soc. 106, 6956–6959 (1984)CrossRefGoogle Scholar
  41. 41.
    Sivaguru, J., et al.: The reaction of singlet oxygen with enecarbamates: a mechanistic playground for investigating chemoselectivity, stereoselectivity, and vibratioselectivity of photooxidations. Acc. Chem. Res. 41, 387–400 (2008)CrossRefGoogle Scholar
  42. 42.
    Gorman, A., Gould, I., Hamblett, I.: Time-resolved study of the solvent and temperature dependence of singlet oxygen (1Δg) reactivity toward enol ethers: reactivity parameters typical of rapid reversible exciplex formation. J. Am. Chem. Soc. 104, 7098–7104 (1982)CrossRefGoogle Scholar
  43. 43.
    Berthelot, M.: Recherches sur les affinités—De la formation et de la décomposition des éthers. Ann. Chim. Phys. 66, 110 (1862)Google Scholar
  44. 44.
    Hood, J.J.: XXXVI. On the influence of heat on the rate of chemical change. Philos. Mag. 20, 323–328 (1885)CrossRefGoogle Scholar
  45. 45.
    Van’t Hoff, J.H.: Etudes de dynamique chimique. Muller (1884)Google Scholar
  46. 46.
    Tredgold, R.: On very low mobility carriers. Proc. Phys. Soc. London 80, 807 (1962)CrossRefGoogle Scholar
  47. 47.
    Hurd, C.: Quantum tunnelling and the temperature dependent DC conduction in low-conductivity semiconductors. J. Phys. C 18, 6487 (1985)CrossRefGoogle Scholar
  48. 48.
    Chiloyan, V., Garg, J., Esfarjani, K., Chen, G.: Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps. Nat. Comm. 6 (2015)Google Scholar
  49. 49.
    Mielnik-Pyszczorski, A., Gawarecki, K., Machnikowski, P.: Phonon-assisted tunneling of electrons in a quantum well/quantum dot injection structure. Phys. Rev. B 91, 195421 (2015)CrossRefGoogle Scholar
  50. 50.
    Greer, E.M., Kwon, K., Greer, A., Doubleday, C.: Thermally activated tunneling in organic reactions. Tetrahedron 72, 7357–7373 (2016)CrossRefGoogle Scholar
  51. 51.
    Bell, R.P.: The Tunnel Effect in Chemistry. Springer, Berlin (2013)Google Scholar
  52. 52.
    Harmony, M.: Quantum mechanical tunnelling in chemistry. Chem. Soc. Rev. 1, 211–228 (1972)CrossRefGoogle Scholar
  53. 53.
    Anslyn, E.V., Dougherty, D.A.: Modern Physical Organic Chemistry. University Science Books (2006)Google Scholar
  54. 54.
    Carpenter, B.K.: Kinetic isotope effects: unearthing the unconventional. Nat. Chem. 2, 80–82 (2010)CrossRefGoogle Scholar
  55. 55.
    Kwart, H.: Temperature dependence of the primary kinetic hydrogen isotope effect as a mechanistic criterion. Acc. Chem. Res. 15, 401–408 (1982)CrossRefGoogle Scholar
  56. 56.
    McMahon, R.J.: Chemistry. Chemical reactions involving quantum tunneling. Science 299, 833–834 (2003)PubMedGoogle Scholar
  57. 57.
    Meisner, J., Kästner, J.: Atom tunneling in chemistry. Angew. Chem. Int. Ed. 55, 5400–5413 (2016)CrossRefGoogle Scholar
  58. 58.
    Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics. Wiley, New York (1977)Google Scholar
  59. 59.
    Eckart, C.: The penetration of a potential barrier by electrons. Phys. Rev. 35, 1303 (1930)CrossRefGoogle Scholar
  60. 60.
    Bell, R.: Liversidge lecture. Recent advances in the study of kinetic hydrogen isotope effects. Chem. Soc. Rev. 3, 513–544 (1974)CrossRefGoogle Scholar
  61. 61.
    Aquilanti, V., et al.: Exact activation energies and phenomenological description of quantum tunneling for model potential energy surfaces. The F + H2 reaction at low temperature. Chem. Phys. 398, 186–191 (2012)CrossRefGoogle Scholar
  62. 62.
    Kaestner, J.: Theory and simulation of atom tunneling in chemical reactions. WIRE 4, 158–168 (2014)Google Scholar
  63. 63.
    Limbach, H.H., Miguel Lopez, J., Kohen, A.: Arrhenius curves of hydrogen transfers: tunnel effects, isotope effects and effects of pre-equilibria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1399–1415 (2006)CrossRefGoogle Scholar
  64. 64.
    Ogilby, P.R., Kristiansen, M., Clough, R.L.: Singlet oxygen formation in a solid organic polymer upon irradiation of the oxygen-polymer charge-transfer band. Macromolecules 23, 2698–2704 (1990)CrossRefGoogle Scholar
  65. 65.
    Jensen, P., Arnbjerg, J., Tolbod, L.P., Toftegaard, R., Ogilby, P.R.: Influence of an intermolecular charge-transfer state on excited-state relaxation dynamics: solvent effect on the methylnaphthalene–oxygen system and its significance for singlet oxygen production. J. Phys. Chem. A 113, 9965–9973 (2009)CrossRefGoogle Scholar
  66. 66.
    Paterson, M.J., Christiansen, O., Jensen, F., Ogilby, P.R.: Overview of theoretical and computational methods applied to the oxygen-organic molecule photosystem. Photochem. Photobiol. 82, 1136–1160 (2006)CrossRefGoogle Scholar
  67. 67.
    Evans, D.: Molecular association of oxygen and aromatic substances. J. Chem. Soc. 345–347 (1953)Google Scholar
  68. 68.
    Kawaoka, K., Khan, A., Kearns, D.R.: Role of singlet excited states of molecular oxygen in the quenching of organic triplet states. J. Chem. Phys. 46, 1842–1853 (1967)CrossRefGoogle Scholar
  69. 69.
    Gooding, E.A., Serak, K.R., Ogilby, P.R.: Ground-state benzene-oxygen complex. J. Phys. Chem. 95, 7868–7871 (1991)CrossRefGoogle Scholar
  70. 70.
    Lim, E., Kowalski, V.: Effect of oxygen on the ultraviolet spectra of benzene. J. Chem. Phys. 36, 1729–1732 (1962)CrossRefGoogle Scholar
  71. 71.
    Munck, A.U., Scott, J.F.: Ultra-violet absorption of oxygen in organic solvents. Nature 177, 587 (1956)CrossRefGoogle Scholar
  72. 72.
    Orgel, L., Mulliken, R.S.: Molecular complexes and their spectra. VII. The spectrophotometric study of molecular complexes in solution; contact charge-transfer Spectra1. J. Am. Chem. Soc. 79, 4839–4846 (1957)CrossRefGoogle Scholar
  73. 73.
    Scurlock, R.D., Ogilby, P.R.: Singlet molecular oxygen (1ΔgO2) formation upon irradiation of an oxygen (3ΣgO2)-organic molecule charge-transfer absorption band. J. Phys. Chem. 93, 5493–5500 (1989)CrossRefGoogle Scholar
  74. 74.
    Monroe, B.M.: Quenching of singlet oxygen by aliphatic amines. J. Phys. Chem. 81, 1861–1864 (1977)CrossRefGoogle Scholar
  75. 75.
    Clennan, E.L., Noe, L., Szneler, E., Wen, T.: Hydrazines: new charge-transfer physical quenchers of singlet oxygen. J. Am. Chem. Soc. 112, 5080–5085 (1990)CrossRefGoogle Scholar
  76. 76.
    Liang, J., Gu, C., Kacher, M., Foote, C.S.: Chemistry of singlet oxygen. 45. Mechanism of the photooxidation of sulfides. J. Am. Chem. Soc. 105, 4717–4721 (1983)CrossRefGoogle Scholar
  77. 77.
    Khan, A.U., Kearns, D.R.: Energetics of the interaction of molecular oxygen with organic molecules. J. Chem. Phys. 48, 3272–3275 (1968)CrossRefGoogle Scholar
  78. 78.
    Minaev, B.F.: Spin-orbit coupling mechanism of singlet oxygen a1Δg quenching by solvent vibrations. Chem. Phys. 483, 84–95 (2016)Google Scholar
  79. 79.
    Minaev, B.: Spin-orbit coupling of charge-transfer states and the mechanism for quenching singlet oxygen by amines. Theo. Exp. Chem. 20, 199–201 (1984)CrossRefGoogle Scholar
  80. 80.
    Minaev, B.F.: Electronic mechanisms of activation of molecular oxygen. Russ. Chem. Rev. 76, 988–1010 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryAarhus UniversityAarhusDenmark

Personalised recommendations