Solvent Effects on the O2(a1g) → O2(b1\(\Sigma_{\text{g}}^{ + }\)) Transition

  • Mikkel BregnhøjEmail author
Part of the Springer Theses book series (Springer Theses)


In contrast to the O2(b1\(\Sigma_{\text{g}}^{ + }\)) → O2(X3\(\Sigma_{\text{g}}^{ - }\)) and O2(a1g) → O2(X3\(\Sigma_{\text{g}}^{ - }\)) transitions, the O2(b1\(\Sigma_{\text{g}}^{ + }\)) → O2(a1g) transition is not forbidden by the selection rule for spin, only those regarding parity, symmetry, and angular momentum [1]. As such, this transition is presumably stronger and more readily detected in a spectroscopic experiment. Unfortunately, the transition falls in a spectral region (~1920 nm, ~5200 cm−1), where fast photomultiplier tubes generally do not function, and we have to rely on slow and insensitive semiconductor devices to detect the desired signal. Therefore, the inherently short lifetime of O2(b1\(\Sigma_{\text{g}}^{ + }\)) in solution limits the range of systems where O2(b1\(\Sigma_{\text{g}}^{ + }\)) → O2(a1g) fluorescence can be detected with time-resolution [2].


  1. 1.
    Herzberg, G.: Spectra of Diatomic Molecules, 2nd edn. Van Nostrand Reinhold (1950)Google Scholar
  2. 2.
    Weldon, D., Poulsen, T.D., Mikkelsen, K.V., Ogilby, P.R.: Singlet sigma: the “other” singlet oxygen in solution. Photochem. Photobiol. 70, 369–379 (1999)CrossRefGoogle Scholar
  3. 3.
    Weldon, D., Ogilby, P.R.: Time-resolved absorption spectrum of singlet oxygen in solution. J. Am. Chem. Soc. 120, 12978–12979 (1998)CrossRefGoogle Scholar
  4. 4.
    Bachilo, S., Nichiporovich, I., Losev, A.: Detection of a1g to b1Σg+ oxygen absorption in solutions. J. Appl. Spectrosc. 65, 849–852 (1998)CrossRefGoogle Scholar
  5. 5.
    Andersen, L.K., Ogilby, P.R.: Time-resolved detection of singlet oxygen in a transmission microscope. Photochem. Photobiol. 73, 489–492 (2001)CrossRefGoogle Scholar
  6. 6.
    Snyder, J.W., et al.: Singlet oxygen microscope: from phase-separated polymers to single biological cells. Acc. Chem. Res. 37, 894–901 (2004)CrossRefGoogle Scholar
  7. 7.
    Ogilby, P.R.: Solvent effects on the radiative transitions of singlet oxygen. Acc. Chem. Res. 32, 512–519 (1999)CrossRefGoogle Scholar
  8. 8.
    Dam, N., Keszthelyi, T., Andersen, L.K., Mikkelsen, K.V., Ogilby, P.R.: Effect of solvent on the O2 (a1Δg) → O2 (b1Σg+) absorption spectrum: demonstrating the importance of equilibrium vs nonequilibrium solvation. J. Phys. Chem. A 106, 5263–5270 (2002)CrossRefGoogle Scholar
  9. 9.
    Minaev, B.F., Ågren, H.: Collision-induced b1Σg+–a1 Δg, b1Σg+–X3Σg and a1Δg–X3Σg transition probabilities in molecular oxygen. J. Chem. Soc., Faraday Trans. 93, 2231–2239 (1997)CrossRefGoogle Scholar
  10. 10.
    Minaev, B.F.: Electronic mechanisms of activation of molecular oxygen. Russ. Chem. Rev. 76, 988–1010 (2007)CrossRefGoogle Scholar
  11. 11.
    Andersen, L.K., Ogilby, P.R.: Absorption spectrum of singlet oxygen (a1Δg → b1Σg+) in D2O: enabling the test of a model for the effect of solvent on oxygen’s radiative transitions. J. Phys. Chem. A 106, 11064–11069 (2002)CrossRefGoogle Scholar
  12. 12.
    Schmidt, R., Bodesheim, M.: Collision-induced radiative transitions b1Σg+ → a1Δg, b1Σg+ → X3Σg, and a1Δg → X3Σg of O2. J. Phys. Chem. 99, 15919–15924 (1995)CrossRefGoogle Scholar
  13. 13.
    Andersen, L.K., Ogilby, P.R.: A nanosecond near-infrared step-scan Fourier transform absorption spectrometer: monitoring singlet oxygen, organic molecule triplet states, and associated thermal effects upon pulsed-laser irradiation of a photosensitizer. Rev. Sci. Instrum. 73, 4313–4325 (2002)CrossRefGoogle Scholar
  14. 14.
    Bregnhøj, M., Ogilby, P.R.: Effect of solvent on the O2(a1Δg) → O2(b1Σg+) absorption coefficient. J. Phys. Chem. A 119, 9236–9243 (2015)CrossRefGoogle Scholar
  15. 15.
    Terazima, M., Hirota, N., Shinohara, H., Saito, Y.: Photothermal investigation of the triplet state of carbon molecule (C60). J. Phys. Chem. 95, 9080–9085 (1991)CrossRefGoogle Scholar
  16. 16.
    Schmidt, R., Tanielian, C., Dunsbach, R., Wolff, C.: Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization. J. Photochem. Photobiol., A 79, 11–17 (1994)CrossRefGoogle Scholar
  17. 17.
    Hung, R.R., Grabowski, J.J.: A precise determination of the triplet energy of carbon (C60) by photoacoustic calorimetry. J. Phys. Chem. 95, 6073–6075 (1991)CrossRefGoogle Scholar
  18. 18.
    Wilkinson, F., Helman, W.P., Ross, A.B.: Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. an expanded and revised compilation. J. Phys. Chem. Ref. Data 24, 663–677 (1995)CrossRefGoogle Scholar
  19. 19.
    Bazin, M., Ebbesen, T.W.: Distortions in laser flash photolysis absorption measurements. The overlap problem. Photochem. Photobiol. 37, 675–678 (1983)CrossRefGoogle Scholar
  20. 20.
    Einstein, A.: Zur quantentheorie der strahlung. Physik. Z. 18 (1917)Google Scholar
  21. 21.
    Kleppner, D.: Rereading Einstein on radiation. Rev. Bras. Ensino Fís. 27, 87–91 (2005)CrossRefGoogle Scholar
  22. 22.
    Strickler, S., Berg, R.A.: Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–822 (1962)CrossRefGoogle Scholar
  23. 23.
    Birks, J.B., Dyson, D.: The relations between the fluorescence and absorption properties of organic molecules. Proc. R. Soc. A 275, 135–148 (1963)CrossRefGoogle Scholar
  24. 24.
    Klán, P., Wirz, J.: Photochemistry of Organic Compounds: From Concepts to Practice. Wiley (2009)Google Scholar
  25. 25.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer (2007)Google Scholar
  26. 26.
    Hirayama, S., Phillips, D.: Correction for refractive index in the comparison of radiative lifetimes in vapour and solution phases. J. Photochem. 12, 139–145 (1980)CrossRefGoogle Scholar
  27. 27.
    Lewis, G.N., Kasha, M.: Phosphorescence in fluid media and the reverse process of singlet-triplet absorption. J. Am. Chem. Soc. 67, 994–1003 (1945)CrossRefGoogle Scholar
  28. 28.
    Azumi, T., O’donnell, C., McGlynn, S.: On the multiplicity of the phosphorescent state of organic molecules. J. Chem. Phys. 45, 2735–2742 (1966)CrossRefGoogle Scholar
  29. 29.
    Crosby, G.A., Demas, J.N.: Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971)CrossRefGoogle Scholar
  30. 30.
    Keszthelyi, T., Poulsen, T.D., Ogilby, P.R., Mikkelsen, K.V.: O2(a1Δg) absorption and O2(b1Σg+) emission in solution: quantifying the a-b Stokes shift. J. Phys. Chem. A 104, 10550–10555 (2000)CrossRefGoogle Scholar
  31. 31.
    Schmidt, R., Shafii, F., Hild, M.: The mechanism of the solvent perturbation of the a1Δg → X3Σg radiative transition of O2. J. Phys. Chem. A 103, 2599–2605 (1999)CrossRefGoogle Scholar
  32. 32.
    van der Bondi, A.: Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)CrossRefGoogle Scholar
  33. 33.
    Hild, M., Schmidt, R.: The mechanism of the collision-induced enhancement of the a1Δg → X3Σg and b1Σg+ → a1Δg radiative transitions of O2. J. Phys. Chem. A 103, 6091–6096 (1999)CrossRefGoogle Scholar
  34. 34.
    Poulsen, T.D., Ogilby, P.R., Mikkelsen, K.V.: Solvent effects on the O2(a1Δg)–O2 (X3Σg) radiative transition: comments regarding charge-transfer interactions. J. Phys. Chem. A 102, 9829–9832 (1998)CrossRefGoogle Scholar
  35. 35.
    Scurlock, R.D., Ogilby, P.R.: Effect of solvent on the rate constant for the radiative deactivation of singlet molecular oxygen O2(a1g). J. Phys. Chem. 91, 4599–4602 (1987)CrossRefGoogle Scholar
  36. 36.
    Minaev, B.F., Lunell, S., Kobzev, G.: The influence of intermolecular interaction on the forbidden near-IR transitions in molecular oxygen. J. Mol. Struct. Theochem 284, 1–9 (1993)CrossRefGoogle Scholar
  37. 37.
    Tinkham, M., Strandberg, M.W.P.: Theory of the fine structure of the molecular oxygen ground state. Phys. Rev. 97, 937 (1955)CrossRefGoogle Scholar
  38. 38.
    Klotz, R., Marian, C.M., Peyerimhoff, S.D., Hess, B.A., Buenker, R.J.: Calculation of spin-forbidden radiative transitions using correlated wavefunctions: lifetimes of b1Σg+, a1Δg states in O2, S2 and SO. Chem. Phys. 89, 223–236 (1984)CrossRefGoogle Scholar
  39. 39.
    Minaev, B.F., Murugan, N.A., Ågren, H.: Dioxygen spectra and bioactivation. Int. J. Quant. Chem. 113, 1847–1867 (2013)CrossRefGoogle Scholar
  40. 40.
    Cosby, P.C., Sharpee, B.D., Slanger, T.G., Huestis, D.L., Hanuschik, R.W.: High‐resolution terrestrial nightglow emission line atlas from UVES/VLT: positions, intensities, and identifications for 2808 lines at 314–1043 nm. J. Geophys. Res. 111 (2006)Google Scholar
  41. 41.
    Slanger, T.G., Copeland, R.A.: Energetic oxygen in the upper atmosphere and the laboratory. Chem. Rev. 103, 4731–4766 (2003)CrossRefGoogle Scholar
  42. 42.
    Minaev, B.F.: Intensities of spin-forbidden transitions in molecular oxygen and selective heavy-atom effects. Int. J. Quant. Chem. 17, 367–374 (1980)CrossRefGoogle Scholar
  43. 43.
    Noxon, J.: Observation of the transition in O2. Can. J. Phys. 39, 1110–1119 (1961)CrossRefGoogle Scholar
  44. 44.
    Becker, A., Schurath, U., Dubost, H., Galaup, J.: Luminescence of metastable 16O2(18O2) in solid argon: relaxation and energy transfer. Chem. Phys. 125, 321–336 (1988)CrossRefGoogle Scholar
  45. 45.
    Fink, E., Setzer, K., Wildt, J., Ramsay, D., Vervloet, M.: Collision-induced emission of O2(b1Σg+ → a1Δg) in the gas phase. Int. J. Quant. Chem. 39, 287–298 (1991)CrossRefGoogle Scholar
  46. 46.
    Bregnhøj, M., Westberg, M., Minaev, B.F., Ogilby, P.R.: Singlet oxygen photophysics in liquid solvents: converging on a unified picture. Acc. Chem. Res. 50(8), 1920–1927 (2017)CrossRefGoogle Scholar
  47. 47.
    Minaev, B.F., Lunell, S., Kobzev, G.I.: Collision-Induced intensity of the b1Σg+–a1Δg transition in molecular oxygen: model calculations for the collision complex O2 + H2. Int. J. Quant. Chem. 50, 279–292 (1994)CrossRefGoogle Scholar
  48. 48.
    Darmanyan, A.P.: Effect of charge-transfer interactions on the radiative rate constant of 1Δg singlet oxygen. J. Phys. Chem. A 102, 9833–9837 (1998)CrossRefGoogle Scholar
  49. 49.
    Schmidt, R., Afshari, E.: Comment on “Effect of solvent on the phosphorescence rate constant of singlet molecular oxygen (1g)”. J. Phys. Chem. 94, 4377–4378 (1990)CrossRefGoogle Scholar
  50. 50.
    Ogilby, P.R.: Radiative lifetime of singlet molecular oxygen (1gO2): comment. J. Phys. Chem. 93, 4691–4692 (1989)CrossRefGoogle Scholar
  51. 51.
    Bregnhøj, M., Krægpøth, M.V., Sørensen, R.J., Westberg, M., Ogilby, P.R.: Solvent and heavy-atom effects on the O2(X3Σg) → O2(b1Σg+) absorption transition. J. Phys. Chem. A 120, 8285–8296 (2016)CrossRefGoogle Scholar
  52. 52.
    Schweitzer, C., Schmidt, R.: Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1758 (2003)CrossRefGoogle Scholar
  53. 53.
    Wessels, J.M., Rodgers, M.A.: Effect of solvent polarizability on the forbidden 1Δg → 3Σg transition in molecular oxygen: a Fourier transform near-infrared luminescence study. J. Phys. Chem. 99, 17586–17592 (1995)CrossRefGoogle Scholar
  54. 54.
    Georges, T.T., MacPherson, A.N.: Fourier-transform luminescence spectroscopy of solvated singlet oxygen. J. Chem. Soc., Faraday Trans. 90, 1065–1072 (1994)CrossRefGoogle Scholar
  55. 55.
    Schmidt, R.: Solvent shift of the 1Δg → 3Σg phosphorescence of O2. J. Phys. Chem. 100, 8049–8052 (1996)CrossRefGoogle Scholar
  56. 56.
    McGlynn, S.P., Azumi, T., Kinoshita, M.: Molecular Spectroscopy of the Triplet State. Prentice-Hall (1969)Google Scholar
  57. 57.
    McRae, E.: Theory of solvent effects on molecular electronic spectra. Frequency shifts. J. Phys. Chem. 61, 562–572 (1957)CrossRefGoogle Scholar
  58. 58.
    Zipp, A., Kauzmann, W.: Anomalous effect of pressure on spectral solvent shifts in water and perfluoro n-hexane. J. Chem. Phys. 59, 4215–4224 (1973)CrossRefGoogle Scholar
  59. 59.
    Jensen, R.L., Holmegaard, L., Ogilby, P.R.: Temperature effect on radiative lifetimes: the case of singlet oxygen in liquid solvents. J. Phys. Chem. B 117, 16227–16235 (2013)CrossRefGoogle Scholar
  60. 60.
    Poulsen, T.D., Ogilby, P.R., Mikkelsen, K.V.: The a1Δg → X3Σg transition in molecular oxygen: interpretation of solvent effects on spectral shifts. J. Phys. Chem. A 103, 3418–3422 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryAarhus UniversityAarhusDenmark

Personalised recommendations