Advertisement

Direct \({\text{O}}_{2} ({\text{X}}^{3}\Sigma _{\text{g}}^{ - }) \to {\text{O}}_{2} ({\text{b}}^{1} \Sigma_{\text{g}}^{ + } )\) Excitation

  • Mikkel BregnhøjEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Over the years, singlet oxygen has traditionally (and often with great success) been produced in a photosensitized process (see Chap.  1). The very fact that the singlet oxygen precursor is an excited electronic state of a molecule allows for a great deal of control over when and where singlet oxygen is formed. This is particularly relevant if one wants to study biological systems where focused lasers and microscopes may be used to, for example, illuminate and perturb a specific sensitizer-incubated organelle of a cell.

References

  1. 1.
    Westberg, M., et al.: Exerting better control and specificity with singlet oxygen experiments in live mammalian cells. Methods 109, 81–91 (2016)CrossRefGoogle Scholar
  2. 2.
    Westberg, M., et al.: Control of singlet oxygen production in experiments performed on single mammalian cells. J. Photochem. Photobiol., A 321, 297–308 (2016)CrossRefGoogle Scholar
  3. 3.
    Ogilby, P.R.: Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 39, 3181–3209 (2010)CrossRefGoogle Scholar
  4. 4.
    da Silva, E.F., et al.: Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization. Integr. Biol. 8, 177–193 (2016)CrossRefGoogle Scholar
  5. 5.
    Planas, O., et al.: Newest approaches to singlet oxygen photosensitisation in biological media. Photochemistry, pp. 233–278 (2014)Google Scholar
  6. 6.
    Schweitzer, C., Schmidt, R.: Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1758 (2003)CrossRefGoogle Scholar
  7. 7.
    Bregnhøj, M., Blazquez-Castro, A., Westberg, M., Breitenbach, T., Ogilby, P.R.: Direct 765 nm optical excitation of molecular oxygen in solution and in single mammalian cells. J. Phys. Chem. B 119, 5422–5429 (2015)CrossRefGoogle Scholar
  8. 8.
    Anquez, F., Belkoura, I.E.Y., Suret, P., Randoux, S., Courtade, E.: Cell death induced by direct laser activation of singlet oxygen at 1270 nm. Laser Phys. 23, 025601 (2013)CrossRefGoogle Scholar
  9. 9.
    Herzberg, G.: Spectra of Diatomic Molecules: 2nd ed (Van Nostrand Reinhold, 1950)Google Scholar
  10. 10.
    Krasnovsky Jr., A., Drozdova, N., Ivanov, A., Ambartsumian, R.: Activation of molecular oxygen by infrared laser radiation in pigment-free aerobic systems. Biochemistry (Moscow) 68, 963–966 (2003)CrossRefGoogle Scholar
  11. 11.
    Jockusch, S., et al.: Singlet molecular oxygen by direct excitation. Photochem. Photobiol. Sci. 7, 235–239 (2008)CrossRefGoogle Scholar
  12. 12.
    Hermans, C., et al.: Absorption cross-sections of atmospheric constituents: NO2, O2, and H2O. Environ. Sci. Pollut. Res. 6, 151–158 (1999)CrossRefGoogle Scholar
  13. 13.
    Newnham, D.A., Ballard, J.: Visible absorption cross sections and integrated absorption intensities of molecular oxygen (O2 and O4). J. Geophys. Res. 103, 28801–28815 (1998)CrossRefGoogle Scholar
  14. 14.
    Fink, E., Setzer, K., Wildt, J., Ramsay, D., Vervloet, M.: Collision-induced emission of O2 (b1Σg+ → a1Δg) in the gas phase. Int. J. Quant. Chem. 39, 287–298 (1991)CrossRefGoogle Scholar
  15. 15.
    Long, C., Kearns, D.R.: Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen. J. Chem. Phys. 59, 5729–5736 (1973)CrossRefGoogle Scholar
  16. 16.
    Evans, D.: Oxidation by photochemically produced singlet states of oxygen. J. Chem. Soc. D:Chem. Comm., 367–368 (1969)Google Scholar
  17. 17.
    Greenblatt, G.D., Orlando, J.J., Burkholder, J.B., Ravishankara, A.: Absorption measurements of oxygen between 330 and 1140 nm. J. Geophys. Res. 95, 18577–18582 (1990)CrossRefGoogle Scholar
  18. 18.
    Vorobjev, I.A., Liang, H., Wright, W.H., Berns, M.W.: Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges. Biophys. J. 64, 533–538 (1993)CrossRefGoogle Scholar
  19. 19.
    Neuman, K.C., Chadd, E.H., Liou, G.F., Bergman, K., Block, S.M.: Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999)CrossRefGoogle Scholar
  20. 20.
    Thanh, S. Photogenerated singlet oxygen damages cells in optical traps. arXiv, Cornell University Press (2009)Google Scholar
  21. 21.
    Anquez, F., Yazidi-Belkoura, E., Randoux, S., Suret, P., Courtade, E.: Cancerous cell death from sensitizer free photoactivation of singlet oxygen. Photochem. Photobiol. 88, 167–174 (2012)CrossRefGoogle Scholar
  22. 22.
    Scurlock, R.D., Wang, B., Ogilby, P.R.: Chemical reactivity of singlet sigma oxygen (b1Σg+) in solution. J. Am. Chem. Soc. 118, 388–392 (1996)CrossRefGoogle Scholar
  23. 23.
    Bregnhøj, M., Krægpøth, M.V., Sørensen, R.J., Westberg, M., Ogilby, P.R.: Solvent and heavy-atom effects on the O2(X3Σg) → O2(b1Σg+) absorption transition. J. Phys. Chem. A 120, 8285–8296 (2016)CrossRefGoogle Scholar
  24. 24.
    Demtröder, W.: Laser Spectroscopy: Basic Concepts and Instrumentation (Springer Science & Business Media, 2013)Google Scholar
  25. 25.
    Wessels, J.M., Rodgers, M.A.: Effect of solvent polarizability on the forbidden \(^{1} \Delta_{g} \to^{3} \Sigma_{\text{g}}^{ - }\) transition in molecular oxygen: a fourier transform near-infrared luminescence study. J. Phys. Chem. 99:17586–17592 (1995)CrossRefGoogle Scholar
  26. 26.
    Truscott, T.G., MacPherson, A.N.: Fourier-transform luminescence spectroscopy of solvated singlet oxygen. J. Chem. Soc., Faraday Trans. 90, 1065–1072 (1994)CrossRefGoogle Scholar
  27. 27.
    Dam, N., Keszthelyi, T., Andersen, L. K., Mikkelsen, K.V., Ogilby, P.R.: Effect of solvent on the \({\text{O}}_{2} \left( {{\text{a}}^{1} \Delta_{\text{g}} } \right) \, \to {\text{ O}}_{2} \left( {{\text{b}}^{1} \Sigma_{\text{g}}^{ + } } \right)\) absorption spectrum: demonstrating the Importance of Equilibrium vs Nonequilibrium Solvation. J. Phys. Chem. A 106, 5263–5270 (2002)CrossRefGoogle Scholar
  28. 28.
    Wilkinson, F., Helman, W.P., Ross, A.B.: Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data 24, 663–677 (1995)CrossRefGoogle Scholar
  29. 29.
    Chou, P., Wei, G., Lin, C., Wei, C., Chang, C. Direct spectroscopic evidence of photosensitized O2 765 nm \(\left( {^{1} \Sigma_{g}^{ + } \to^{3} \Sigma_{g}^{ - } } \right)\) and O2 Dimol 634 and 703 nm \(\left( {(^{1} \Delta_{\text{g}} )_{2} \to \left( {^{3} \Sigma_{g}^{ - } } \right)_{2} } \right)\) Vibronic Emission in Solution. J. Am. Chem. Soc. 118, 3031-3032 (1996)CrossRefGoogle Scholar
  30. 30.
    Keszthelyi, T., Poulsen, T. D., Ogilby, P.R. and Mikkelsen, K.V.: O2 (a1Δg) Absorption and \(O_{2} \left( {b^{1} \Sigma_{\text{g}}^{ + } } \right)\) emission in solution: quantifying the a–b stokes shift. J. Phys. Chem. A 104, 10550–10555 (2000)Google Scholar
  31. 31.
    Arnbjerg, J., et al.: One-and two-photon photosensitized singlet oxygen production: characterization of aromatic ketones as sensitizer standards. J. Phys. Chem. A 111, 5756–5767 (2007)CrossRefGoogle Scholar
  32. 32.
    Martí, C., Jürgens, O., Cuenca, O., Casals, M., Nonell, S.: Aromatic ketones as standards for singlet molecular oxygen O2(1Δg) photosensitization. Time-resolved photoacoustic and near-IR emission studies. J. Photochem. Photobiol., A 97, 11–18 (1996)CrossRefGoogle Scholar
  33. 33.
    Gorman, A., Hamblett, I., Lambert, C., Spencer, B., Standen, M.: Identification of both preequilibrium and diffusion limits for reaction of singlet oxygen, O2(a1g), with both physical and chemical quenchers: variable-temperature, time-resolved infrared luminescence studies. J. Am. Chem. Soc. 110, 8053–8059 (1988)CrossRefGoogle Scholar
  34. 34.
    Gorman, A., Gould, I., Hamblett, I.: Time-resolved study of the solvent and temperature dependence of singlet oxygen (1Δg) reactivity toward enol ethers: reactivity parameters typical of rapid reversible exciplex formation. J. Am. Chem. Soc. 104, 7098–7104 (1982)CrossRefGoogle Scholar
  35. 35.
    Gorman, A., Lovering, G., Rodgers, M.: The entropy-controlled reactivity of singlet oxygen (1g) toward furans and indoles in toluene. A variable-temperature study by pulse radiolysis. J. Am. Chem. Soc. 101, 3050–3055 (1979)CrossRefGoogle Scholar
  36. 36.
    Peters, G., Rodgers, M.: Time-resolved determinations of deuterium isotope effects on O2(1g) lifetimes in solution. J. Am. Chem. Soc. 103, 6759–6761 (1981)CrossRefGoogle Scholar
  37. 37.
    Jensen, R.L., Arnbjerg, J., Ogilby, P.R.: Reaction of singlet oxygen with tryptophan in proteins: a pronounced effect of the local environment on the reaction rate. J. Am. Chem. Soc. 134, 9820–9826 (2012)CrossRefGoogle Scholar
  38. 38.
    Lebrun, V., et al.: Efficient oxidation and destabilization of Zn (Cys) 4 zinc fingers by singlet oxygen. Angew. Chem. Int. Ed. 126, 9519–9522 (2014)CrossRefGoogle Scholar
  39. 39.
    Goličnik, M.: On the lambert W function and its utility in biochemical kinetics. Biochem. Eng. J. 63, 116–123 (2012)CrossRefGoogle Scholar
  40. 40.
    Patel, C., Tam, A.: Pulsed optoacoustic spectroscopy of condensed matter. Rev. Mod. Phys. 53, 517–553 (1981)CrossRefGoogle Scholar
  41. 41.
    Crosby, G.A., Demas, J.N.: Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971)CrossRefGoogle Scholar
  42. 42.
    Battino, R., Rettich, T.R., Tominaga, T.: The solubility of oxygen and ozone in liquids. J. Chem. Phys. Ref. Data 12, 163–178 (1983)CrossRefGoogle Scholar
  43. 43.
    Poulsen, T.D., Ogilby P.R., Mikkelsen, K.V.: Solvent Effects on the \({\text{O}}_{2} \left( {{\text{a}}^{1} \Delta_{\text{g}} } \right) \, - {\text{ O}}_{2} ({\text{X}}_{3} \Sigma_{\text{g}}^{ - } )\) radiative transition: comments regarding charge-transfer interactions. J. Phys. Chem. A 102, 9829–9832 (1998)Google Scholar
  44. 44.
    Sánchez, M.A., Mainar, A.M., Pardo, J.I., López, M.C., Urieta, J.S.: Solubility of nonpolar gases in 2, 2, 2-trifluoroethanol and 1, 1, 1, 3, 3, 3-hexafluoropropan-2-ol at several temperatures and 101.33 kPa partial pressure of gas. Can. J. Chem. 79, 1460–1465 (2001)CrossRefGoogle Scholar
  45. 45.
    Scurlock, R.D., Ogilby, P.R.: Effect of solvent on the rate constant for the radiative deactivation of singlet molecular oxygen O2(a1g). J. Phys. Chem. 91, 4599–4602 (1987)CrossRefGoogle Scholar
  46. 46.
    Krasnovsky, A., Kozlov, A., Roumbal, Y.V.: Photochemical investigation of the IR absorption bands of molecular oxygen in organic and aqueous environment. Photochem. Photobiol. Sci. 11, 988–997 (2012)CrossRefGoogle Scholar
  47. 47.
    Scurlock, R.D. & Ogilby, P.R. Singlet molecular oxygen (1ΔgO2) formation upon irradiation of an oxygen \((^{3} \Sigma_{\text{g}}^{ - } O_{2} )\)-organic molecule charge-transfer absorption band. J. Phys. Chem. 93, 5493–5500 (1989)Google Scholar
  48. 48.
    Evans, D. Molecular association of oxygen and aromatic substances. J. Chem. Soc., 345–347 (1953)Google Scholar
  49. 49.
    Munck, A.U., Scott, J.F.: Ultra-violet absorption of oxygen in organic solvents. Nature 177, 587 (1956)CrossRefGoogle Scholar
  50. 50.
    Tsubomura, H., Mulliken, R.: Molecular complexes and their spectra. XII. Ultraviolet absorption spectra caused by the interaction of oxygen with organic molecules. J. Am. Chem. Soc. 82, 5966–5974 (1960)CrossRefGoogle Scholar
  51. 51.
    Saylor, J.H., Battino, R.: The solubilities of the rare gases in some simple benzene derivatives. J. Phys. Chem. 62, 1334–1337 (1958)CrossRefGoogle Scholar
  52. 52.
    Wilhelm, E., Battino, R., Wilcock, R.J.: Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219–262 (1977)CrossRefGoogle Scholar
  53. 53.
    Pimenta, F.M., et al.: Singlet-oxygen-mediated cell death using spatially-localized two-photon excitation of an extracellular sensitizer. J. Phys. Chem. B 116, 10234–10246 (2012)CrossRefGoogle Scholar
  54. 54.
    Morse, P.D., Swartz, H.M.: Measurement of intracellular oxygen concentration using the spin label TEMPOL. Magn. Reson. Med. 2, 114–127 (1985)CrossRefGoogle Scholar
  55. 55.
    Hatz, S., Poulsen, L., Ogilby, P.R.: Time-resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: effects of oxygen diffusion and oxygen concentration. Photochem. Photobiol. 84, 1284–1290 (2008)CrossRefGoogle Scholar
  56. 56.
    Pedersen, B.W., Breitenbach, T., Redmond, R.W., Ogilby, P.R.: Two-photon irradiation of an intracellular singlet oxygen photosensitizer: achieving localized sub-cellular excitation in spatially-resolved experiments. Free Radic. Res. 44, 1383–1397 (2010)CrossRefGoogle Scholar
  57. 57.
    Westberg, M., Holmegaard, L., Pimenta, F.M., Etzerodt, M., Ogilby, P.R.: Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer. J. Am. Chem. Soc. 137, 1632–1642 (2015)CrossRefGoogle Scholar
  58. 58.
    Blázquez-Castro, A., Breitenbach, T., Ogilby, P.R.: Singlet oxygen and ROS in a new light: low-dose subcellular photodynamic treatment enhances proliferation at the single cell level. Photochem. Photobiol. Sci. 13, 1235–1240 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryAarhus UniversityAarhusDenmark

Personalised recommendations