Advertisement

Instrumentation and Experimental Techniques

  • Mikkel Bregnhøj
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Our main light source is a femtosecond laser system described extensively in the literature. The main oscillator is a Ti:Sapphire laser (Spectra Physics Tsunami 3941) pumped by a continuous wave Nd:YVO4 laser (Spectra Physics Millenia V). The oscillator delivers ≈ 100 fs pulses at a repetition rate of 80 MHz, tunable over the range 730–900 nm. The pulse energy of the Tsunami is amplified by a factor of ≈10 in a regenerative amplifier (Spectra Physics Spitfire) pumped by a Q-switched Nd:YLF laser (Spectra Physics Evolution). The amplification process reduces the repetition rate to 1 kHz, and limits the tunable range to 765–840 nm while stretching the pulses to 100–150 fs. When other wavelengths are required, the Spitfire output can either be frequency-doubled in a BBO crystal or be used to pump an optical parametric amplifier (Spectra Physics OPA-900CF-1). This extends the spectral range to 300–3000 nm when combined with second or fourth harmonic generation of the signal or the idler beam.

References

  1. 1.
    Frederiksen, P.K., et al.: Two-photon photosensitized production of singlet oxygen in water. J. Am. Chem. Soc. 127, 255–269 (2005)CrossRefGoogle Scholar
  2. 2.
    Arnbjerg, J., Johnsen, M., Frederiksen, P.K., Braslavsky, S.E., Ogilby, P.R.: Two-photon photosensitized production of singlet oxygen: Optical and optoacoustic characterization of absolute two-photon absorption cross sections for standard sensitizers in different solvents. J. Phys. Chem. A 110, 7375–7385 (2006)CrossRefGoogle Scholar
  3. 3.
    Bregnhøj, M., Blazquez-Castro, A., Westberg, M., Breitenbach, T., Ogilby, P.R.: Direct 765 nm optical excitation of molecular oxygen in solution and in single mammalian cells. J. Phys. Chem. B 119, 5422–5429 (2015)CrossRefGoogle Scholar
  4. 4.
    Frederiksen, P.K., Jørgensen, M., Ogilby, P.R.: Two-photon photosensitized production of singlet oxygen. J. Am. Chem. Soc. 123, 1215–1221 (2001)CrossRefGoogle Scholar
  5. 5.
    Poulsen, T.D., Frederiksen, P.K., Jørgensen, M., Mikkelsen, K.V., Ogilby, P.R.: Two-photon singlet oxygen sensitizers: Quantifying, modeling, and optimizing the two-photon absorption cross section. J. Phys. Chem. A 105, 11488–11495 (2001)CrossRefGoogle Scholar
  6. 6.
    Westberg, M., et al.: Control of singlet oxygen production in experiments performed on single mammalian cells. J. Photochem. Photobiol., A 321, 297–308 (2016)CrossRefGoogle Scholar
  7. 7.
    Andersen, L.K., Ogilby, P.R.: A nanosecond near-infrared step-scan Fourier transform absorption spectrometer: Monitoring singlet oxygen, organic molecule triplet states, and associated thermal effects upon pulsed-laser irradiation of a photosensitizer. Rev. Sci. Instrum. 73, 4313–4325 (2002)CrossRefGoogle Scholar
  8. 8.
    Bregnhøj, M., Ogilby, P.R.: Effect of solvent on the O2(a1Δg) → O2(b1Σg+) absorption coefficient. J. Phys. Chem. A 119, 9236–9243 (2015)CrossRefGoogle Scholar
  9. 9.
    Braiman, M.S., Xiao, Y.: Step-Scan Time-Resolved FT-IR Spectroscopy of Biopolymers. CRC Press (2005)Google Scholar
  10. 10.
    Griffiths, P., De Haseth, J.A.: Fourier Transform Infrared Spectrometry. Wiley (2007)Google Scholar
  11. 11.
    Rodig, C., Siebert, F.: Errors and artifacts in time-resolved step-scan FT-IR spectroscopy. Appl. Spectrosc. 53, 893–901 (1999)CrossRefGoogle Scholar
  12. 12.
    Horowitz, P., Hill, W., Robinson, I.: The Art of Electronics. Cambridge University Press, Cambridge (1980)Google Scholar
  13. 13.
    Snook, R.D., Lowe, R.D.: Thermal lens spectrometry. A review. Analyst 120, 2051–2068 (1995)CrossRefGoogle Scholar
  14. 14.
    Holthoff, E.L., Pellegrino, P.M.: Sensing applications using photoacoustic spectroscopy. CRC Press, Boca Raton, FL (2012)Google Scholar
  15. 15.
    Petrov, V.V., Genina, E.A., Lapin, S.A.: Laser optoacoustics: main methods and principles-review. In: Saratov Fall Meeting 1998: Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, International Society for Optics and Photonics (1999)Google Scholar
  16. 16.
    Lukasievicz, G.V., et al.: Pulsed-laser time-resolved thermal mirror technique in low-absorbance homogeneous linear elastic materials. Appl. Spectrosc. 67, 1111–1116 (2013)CrossRefGoogle Scholar
  17. 17.
    Braslavsky, S.E., Heibel, G.E.: Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chem. Rev. 92, 1381–1410 (1992)CrossRefGoogle Scholar
  18. 18.
    Lai, H., Young, K.: Theory of the pulsed optoacoustic technique. J. Acoust. Soc. Am. 72, 2000 (1982)CrossRefGoogle Scholar
  19. 19.
    Ronis, D.: Theory of fluctuations in colloidal suspensions undergoing steady shear flow. Phys. Rev. A 29, 1453 (1984)CrossRefGoogle Scholar
  20. 20.
    Bialkowski, S.E.: Photothermal spectroscopy methods for chemical analysis. Wiley, New York (1996)CrossRefGoogle Scholar
  21. 21.
    Sigrist, M.W.: Laser generation of acoustic waves in liquids and gases. J. Appl. Phys. 60, R83–R122 (1986)CrossRefGoogle Scholar
  22. 22.
    Arnbjerg, J., et al.: One-and two-photon photosensitized singlet oxygen production: characterization of aromatic ketones as sensitizer standards. J. Phys. Chem. A 111, 5756–5767 (2007)CrossRefGoogle Scholar
  23. 23.
    Patel, C., Tam, A.: Pulsed optoacoustic spectroscopy of condensed matter. Rev. Mod. Phys. 53, 517–553 (1981)CrossRefGoogle Scholar
  24. 24.
    Rothberg, L.J., Simon, J.D., Bernstein, M., Peters, K.S.: Pulsed laser photoacoustic calorimetry of metastable species. J. Am. Chem. Soc. 105, 3464–3468 (1983)CrossRefGoogle Scholar
  25. 25.
    Rudzki, J.E., Goodman, J.L., Peters, K.S.: Simultaneous determination of photoreaction dynamics and energetics using pulsed, time-resolved photoacoustic calorimetry. J. Am. Chem. Soc. 107, 7849–7854 (1985)CrossRefGoogle Scholar
  26. 26.
    dos Santos, R.M.B., Lagoa, A.L.C., Martinho Simões, J.A.: Photoacoustic calorimetry. An examination of a non-classical thermochemistry tool. J. Chem. Thermodyn. 31, 1483–1510 (1999)CrossRefGoogle Scholar
  27. 27.
    Toftegaard, R., et al.: Metal nanoparticle-enhanced radiative transitions: giving singlet oxygen emission a boost. Pure Appl. Chem. 83, 885–898 (2011)CrossRefGoogle Scholar
  28. 28.
    Langhammer, C., Kasemo, B., Zorić, I.: Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J. Chem. Phys. 126, 194702 (2007)CrossRefGoogle Scholar
  29. 29.
    Evanoff, D.D., Chumanov, G.: Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B 108, 13957–13962 (2004)CrossRefGoogle Scholar
  30. 30.
    Raty, J.A., Peiponen, K.: Reflectance study of milk in the UV-visible range. Appl. Spectrosc. 53, 1123–1127 (1999)CrossRefGoogle Scholar
  31. 31.
    Jones, C. J.: d-and f-Block Chemistry. Royal Society of Chemistry (2001)Google Scholar
  32. 32.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer (2007)Google Scholar
  33. 33.
    Nonell, S., Gonzalez, M., Trull, F.R.: 1H-Phenalen-1-One-2-Sulfonic Acid-An extremely efficient singlet molecular-oxygen sensitizer for aqueous-media. Afinidad 50, 445–450 (1993)Google Scholar
  34. 34.
    Reid, D., Bonthrone, W.: Conjugated cyclic hydrocarbons. Part VIII. The benzo [cd] pyrenium cation: synthesis and reactivity. J. Chem. Soc., 5920–5926 (1965)Google Scholar
  35. 35.
    Gittins, D.I., Caruso, F.: Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed. 40, 3001–3004 (2001)CrossRefGoogle Scholar
  36. 36.
    Ali, M.R., Snyder, B., El-Sayed, M.A.: Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 28, 9807–9815 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryAarhus UniversityAarhusDenmark

Personalised recommendations