Advertisement

Introduction

  • Mikkel BregnhøjEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Despite its apparent simplicity with just two identical atoms bound together, molecular oxygen is a wonderfully complex molecule exhibiting many unusual properties with respect to magnetic behavior, spectroscopic accessibility, and chemical reactivity, to name just a few.

References

  1. 1.
    Mulliken, R.S.: The assignment of quantum numbers for electrons in molecules. Phys. Rev. 32, 186–222 (1928)CrossRefGoogle Scholar
  2. 2.
    Mulliken, R.S.: Interpretation of the atmospheric oxygen bands; electronic levels of the oxygen molecule. Nature 122, 505 (1928)CrossRefGoogle Scholar
  3. 3.
    Clennan, E.L., Pace, A.: Advances in singlet oxygen chemistry. Tetrahedron 61, 6665–6691 (2005)CrossRefGoogle Scholar
  4. 4.
    Davies, M.J.: Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 305, 761–770 (2003)CrossRefGoogle Scholar
  5. 5.
    Ogilby, P.R.: Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 39, 3181–3209 (2010)CrossRefGoogle Scholar
  6. 6.
    Nonell, S., Flors, C.: Singlet Oxygen: Applications in Biosciences and Nanosciences. Royal Society of Chemistry (2016)Google Scholar
  7. 7.
    Herzberg, G.: Spectra of Diatomic Molecules, 2nd edn. Van Nostrand Reinhold (1950)Google Scholar
  8. 8.
    Frimer, A.: Singlet Oxygen, vols. I–IV. CRC Press, Boca Raton (1985)Google Scholar
  9. 9.
    Kearns, D.R.: Physical and chemical properties of singlet molecular oxygen. Chem. Rev. 71, 395–427 (1971)CrossRefGoogle Scholar
  10. 10.
    Held, A., Halko, D., Hurst, J.: Mechanisms of chlorine oxidation of hydrogen peroxide. J. Am. Chem. Soc. 100, 5732–5740 (1978)CrossRefGoogle Scholar
  11. 11.
    Folkes, L.K., Candeias, L.P., Wardman, P.: Kinetics and mechanisms of hypochlorous acid reactions. Arch. Biochem. Biophys. 323, 120–126 (1995)CrossRefGoogle Scholar
  12. 12.
    Kanofsky, J.R.: Singlet oxygen production by biological systems. Chem. Biol. Interact. 70, 1–28 (1989)CrossRefGoogle Scholar
  13. 13.
    Schweitzer, C., Schmidt, R.: Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1758 (2003)CrossRefGoogle Scholar
  14. 14.
    Wilkinson, F., Helman, W.P., Ross, A.B.: Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 22, 113–262 (1993)CrossRefGoogle Scholar
  15. 15.
    Scurlock, R.D., Wang, B., Ogilby, P.R.: Chemical Reactivity of Singlet Sigma Oxygen (b1Σg+) in Solution. J. Am. Chem. Soc. 118, 388–392 (1996)CrossRefGoogle Scholar
  16. 16.
    Bodesheim, M., Schmidt, R.: Chemical reactivity of sigma singlet oxygen O2(1Σg+). J. Phys. Chem. A 101, 5672–5677 (1997)CrossRefGoogle Scholar
  17. 17.
    Nonell, S., Braslavsky, S.E.: Time-resolved singlet oxygen detection. Meth. Enzymol. 319, 37–49 (2000)CrossRefGoogle Scholar
  18. 18.
    Snyder, J.W., Skovsen, E., Lambert, J.D., Poulsen, L., Ogilby, P.R.: Optical detection of singlet oxygen from single cells. Phys. Chem. Chem. Phys. 8, 4280–4293 (2006)CrossRefGoogle Scholar
  19. 19.
    Lepeshkevich, S.V., et al.: Photosensitized singlet oxygen luminescence from the protein matrix of Zn-substituted myoglobin. J. Phys. Chem. A 118, 1864–1878 (2014)CrossRefGoogle Scholar
  20. 20.
    Westberg, M., Bregnhøj, M., Etzerodt, M., Ogilby, P.R.: Temperature sensitive singlet oxygen photosensitization by LOV-derived fluorescent flavoproteins. J. Phys. Chem. B 121, 2561–2574 (2017)CrossRefGoogle Scholar
  21. 21.
    Wang, B., Ogilby, P.R.: Quenching of b1Σg+ oxygen in solution. J. Phys. Chem. 97, 193–195 (1993)CrossRefGoogle Scholar
  22. 22.
    Schmidt, R., Bodesheim, M.: Time-resolved measurement of O2 (1Δg) in solution. Phosphorescence from an upper excited state. J. Phys. Chem. 98, 2874–2876 (1994)CrossRefGoogle Scholar
  23. 23.
    Chou, P., Wei, G., Lin, C., Wei, C., Chang, C.: Direct spectroscopic evidence of photosensitized O2 765 nm (1Σg+ → 3Σg) and O2 Dimol 634 and 703 nm ((1Δg)2 → (3Σg)2) vibronic emission in solution. J. Am. Chem. Soc. 118, 3031–3032 (1996)CrossRefGoogle Scholar
  24. 24.
    Weldon, D., Poulsen, T.D., Mikkelsen, K.V., Ogilby, P.R.: Singlet sigma: the “other” singlet oxygen in solution. Photochem. Photobiol. 70, 369–379 (1999)CrossRefGoogle Scholar
  25. 25.
    Schmidt, R., Bodesheim, M.: Collision-Induced Radiative Transitions b1Σg+ → a1Δg, b1Σg+ → X3Σg, and a1Δg → X3Σg of O2. J. Phys. Chem. 99, 15919–15924 (1995)CrossRefGoogle Scholar
  26. 26.
    Bregnhøj, M., Westberg, M., Minaev, B. F., Ogilby, P. R.: Singlet oxygen photophysics in liquid solvents: converging on a unified picture. Acc. Chem. Res., 50, 1920-1927 (2017)CrossRefGoogle Scholar
  27. 27.
    Wilkinson, F., Helman, W.P., Ross, A.B.: Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data 24, 663–677 (1995)CrossRefGoogle Scholar
  28. 28.
    Howard, J.A., Mendenhall, D.G.: Autoxidation and photooxidation of 1,3-diphenylisobenzofuran: a kinetic and product study. Can. J. Chem. 53, 2199–2201 (1975)CrossRefGoogle Scholar
  29. 29.
    Merkel, P.B., Kearns, D.R.: Rate constant for the reaction between 1,3-diphenylisobenzofuran and singlet oxygen. J. Am. Chem. Soc. 97, 462–463 (1975)CrossRefGoogle Scholar
  30. 30.
    Rio, G., Scholl, M.: The photo-oxide of 1, 3-diphenylisobenzofuran. J. Chem. Soc. Chem. Commun., 474 (1975)Google Scholar
  31. 31.
    Bregnhøj, M., Krægpøth, M.V., Sørensen, R.J., Westberg, M., Ogilby, P.R.: Solvent and heavy-atom effects on the O2(X3Σg) → O2(b1Σg+) absorption transition. J. Phys. Chem. A 120, 8285–8296 (2016)CrossRefGoogle Scholar
  32. 32.
    Pimenta, F.M., Jensen, J.K., Etzerodt, M., Ogilby, P.R.: Protein-encapsulated bilirubin: paving the way to a useful probe for singlet oxygen. Photochem. Photobiol. Sci. 14, 665–677 (2015)CrossRefGoogle Scholar
  33. 33.
    Westberg, M., et al.: Control of singlet oxygen production in experiments performed on single mammalian cells. J. Photochem. Photobiol. A 321, 297–308 (2016)CrossRefGoogle Scholar
  34. 34.
    Westberg, M., et al.: Exerting better control and specificity with singlet oxygen experiments in live mammalian cells. Methods 109, 81–91 (2016)CrossRefGoogle Scholar
  35. 35.
    Gollmer, A., et al.: Singlet Oxygen Sensor Green®: photochemical behavior in solution and in a mammalian cell. Photochem. Photobiol. 87, 671–679 (2011)CrossRefGoogle Scholar
  36. 36.
    Moan, J., Wold, E.: Detection of singlet oxygen production by ESR. Nature 279, 450–451 (1979)CrossRefGoogle Scholar
  37. 37.
    Hideg, É, Spetea, C., Vass, I.: Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy. Photosynthesis Res. 39, 191–199 (1994)Google Scholar
  38. 38.
    Braslavsky, S.E., Heibel, G.E.: Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chem. Rev. 92, 1381–1410 (1992)CrossRefGoogle Scholar
  39. 39.
    Tam, A.: Laser optoacoustic spectroscopy. IEEE J. Quant. Electron. 23, 132 (1987)CrossRefGoogle Scholar
  40. 40.
    Bregnhøj, M., Pimenta, F.M., Poronik, Y.M., Gryko, D.T., Ogilby, P.R.: Subtle structural changes in octupolar merocyanine dyes influence the photosensitized production of singlet oxygen. Photochem. Photobiol. Sci. 14, 1138–1146 (2015)CrossRefGoogle Scholar
  41. 41.
    Weldon, D., Ogilby, P.R.: Time-resolved absorption spectrum of singlet oxygen in solution. J. Am. Chem. Soc. 120, 12978–12979 (1998)CrossRefGoogle Scholar
  42. 42.
    Andersen, L.K., Ogilby, P.R.: A nanosecond near-infrared step-scan Fourier transform absorption spectrometer: monitoring singlet oxygen, organic molecule triplet states, and associated thermal effects upon pulsed-laser irradiation of a photosensitizer. Rev. Sci. Instrum. 73, 4313–4325 (2002)CrossRefGoogle Scholar
  43. 43.
    Cramer, C.J., Truhlar, D.G.: Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem. Rev. 99, 2161–2200 (1999)CrossRefGoogle Scholar
  44. 44.
    Reichardt, C., Welton, T.: Solvents and solvent effects in organic chemistry. Wiley (2011)Google Scholar
  45. 45.
    Suppan, P., Ghoneim, N.: Solvatochromism. Royal Society of Chemistry (1997)Google Scholar
  46. 46.
    Tomasi, J., Persico, M.: Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 94, 2027–2094 (1994)CrossRefGoogle Scholar
  47. 47.
    Karelson, M.M., Zerner, M.C.: Theoretical treatment of solvent effects on electronic spectroscopy. J. Phys. Chem. 96, 6949–6957 (1992)CrossRefGoogle Scholar
  48. 48.
    Baev, A., Prasad, P.N., Ågren, H., Samoć, M., Wegener, M.: Metaphotonics: an emerging field with opportunities and challenges. Phys. Rep. 594, 1–60 (2015)CrossRefGoogle Scholar
  49. 49.
    Canuto, S.: Solvation effects on molecules and biomolecules: computational methods and applications. Springer Science & Business Media (2010)Google Scholar
  50. 50.
    Onsager, L.: Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486–1493 (1936)CrossRefGoogle Scholar
  51. 51.
    Kirkwood, J.G.: The dielectric polarization of polar liquids. J. Chem. Phys. 7, 911–919 (1939)CrossRefGoogle Scholar
  52. 52.
    Bayliss, N.S., McRae, E.G.: Solvent effects in organic spectra: dipole forces and the Franck-Condon principle. J. Phys. Chem. 58, 1002–1006 (1954)CrossRefGoogle Scholar
  53. 53.
    Ågren, H., Mikkelsen, K.V.: Theory of solvent effects on electronic spectra. J. Mol. Struct. Theochem 234, 425–467 (1991)CrossRefGoogle Scholar
  54. 54.
    Foresman, J.B., Keith, T.A., Wiberg, K.B., Snoonian, J., Frisch, M.J.: Solvent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. J. Phys. Chem. 100, 16098–16104 (1996)CrossRefGoogle Scholar
  55. 55.
    McRae, E.: Theory of solvent effects on molecular electronic spectra. Frequency shifts. J. Phys. Chem. 61, 562–572 (1957)CrossRefGoogle Scholar
  56. 56.
    Katritzky, A.R., et al.: Quantitative measures of solvent polarity. Chem. Rev. 104, 175–198 (2004)CrossRefGoogle Scholar
  57. 57.
    Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994)CrossRefGoogle Scholar
  58. 58.
    Reichardt, C.: Solvents and solvent effects: an introduction. Org. Process Res. Dev. 11, 105–113 (2007)CrossRefGoogle Scholar
  59. 59.
    Kamlet, M.J., Taft, R.: The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976)CrossRefGoogle Scholar
  60. 60.
    Taft, R., Kamlet, M.J.: The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 98, 2886–2894 (1976)CrossRefGoogle Scholar
  61. 61.
    Kamlet, M.J., Abboud, J.L., Taft, R.: The solvatochromic comparison method. 6. The π* scale of solvent polarities. J. Am. Chem. Soc. 99, 6027–6038 (1977)CrossRefGoogle Scholar
  62. 62.
    Muller, P.: Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). Pure Appl. Chem. 66, 1077–1184 (1994)CrossRefGoogle Scholar
  63. 63.
    Lakowicz, J. R.: Principles of Fluorescence Spectroscopy. Springer (2007)Google Scholar
  64. 64.
    Jiménez-Alonso, S., et al.: Electronic and cytotoxic properties of 2-amino-naphtho[2, 3-b]furan-4,9-diones. J. Org. Chem. 76, 1634–1643 (2011)CrossRefGoogle Scholar
  65. 65.
    Kumpulainen, T., Lang, B., Rosspeintner, A., Vauthey, E.: Ultrafast elementary photochemical processes of organic molecules in liquid solution. Chem. Rev. (2016)Google Scholar
  66. 66.
    Lippert, E. v.: Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Z. Electrochem. Ber. Bunsen. Phys. Chem. 61, 962–975 (1957)Google Scholar
  67. 67.
    Mataga, N., Kaifu, Y., Koizumi, M.: Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bull. Chem. Soc. Jpn 29, 465–470 (1956)CrossRefGoogle Scholar
  68. 68.
    Myers, A.B., Birge, R.R.: The effect of solvent environment on molecular electronic oscillator strengths. J. Chem. Phys. 73, 5314–5321 (1980)CrossRefGoogle Scholar
  69. 69.
    Abe, T., Iweibo, I.: Solvent effects on the nπ* and ππ* absorption intensities of some organic molecules. Bull. Chem. Soc. Jpn 59, 2381–2386 (1986)CrossRefGoogle Scholar
  70. 70.
    Iweibo, I., Obi-Egbedi, N.O., Chongwain, P.T., Lesi, A.F., Abe, T.: The theory of electronic intensity in solution or condensed media. J. Chem. Phys. 93, 2238–2245 (1990)CrossRefGoogle Scholar
  71. 71.
    Toptygin, D.: Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute. J. Fluoresc. 13, 201–219 (2003)CrossRefGoogle Scholar
  72. 72.
    Andrews, J.R., Hudson, B.S.: Environmental effects on radiative rate constants with applications to linear polyenes. J. Chem. Phys. 68, 4587–4594 (2008)CrossRefGoogle Scholar
  73. 73.
    Galbán, J., et al.: The environmental effect on the fluorescence intensity in solution. An analytical model. Analyst 134, 2286–2292 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryAarhus UniversityAarhusDenmark

Personalised recommendations