Advertisement

Fault Tolerant Resource Management Scheme for Computational Grids

  • Anuj KumarEmail author
  • Heman Pathak
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 26)

Abstract

With the fast expansion in wide area networks leading to availability of low cost fundamental computational resources, the popularity of computational grids has increased. Effective dynamic load balancing (DLB), scheduling and fault tolerance collectively determine the QoS requirements of users from computational grids. In an effort to enhance the previously proposed and implemented DLB algorithms for hierarchical and distributed computational grids viz. DLBCGBH – H / G, Fuzzy Min-Max Scheduling (FMiMaS) was proposed and integrated with the Local scheduling proposed in DLBCGBH – H / D, to result into two resource management schemes viz. Fuzzy Hierarchical & Fuzzy Distributed approaches, based on hybrid scheduling demonstrating tremendous improvements against the performance metrics viz. Average Consumed Time, Average Waiting Time and Number of Tasks Migrated. In this paper, these two approaches are tested for fault tolerance against various possibilities of node failure to assess their robustness for the domain of computational grids.

Keywords

Computational grid Distributed Hierarchal Fuzzy logic Load balancing Scheduling Binary heaps Fuzzy Min – Max Scheduling Hybrid scheduling FMiMaS Fault tolerance 

References

  1. 1.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001)CrossRefGoogle Scholar
  2. 2.
    Sharma, G., Bhatia, J.K.: A review on different approaches for load balancing in computational grid. J. Glob. Res. Comput. Sci. 4(4), 82–85 (2013)Google Scholar
  3. 3.
    Balasangameshwara, J.: Improving fault-tolerant load balancing algorithms in computational grids. Int. J. Inf. Eng. Electron. Bus. 6, 53–62 (2015)Google Scholar
  4. 4.
    Altameem, T.: Fault tolerance techniques in grid computing systems. Int. J. Comput. Sci. Inf. Technol. 4, 858–862 (2013)Google Scholar
  5. 5.
    Lu, K., Subrata, R., Zomaya, A.Y.: On the performance-driven load distribution for heterogeneous computational grids. J. Comput. Syst. Sci. 73(8), 1191–1206 (2007)CrossRefGoogle Scholar
  6. 6.
    Subrata, R., Zomaya, A.Y., Landfeldt, B.: Artificial life techniques for load balancing in computational grids. J. Comput. Syst. Sci. 73(8), 1176–1190 (2007)CrossRefGoogle Scholar
  7. 7.
    Yagoubi, B., Slimani, Y.: Task load balancing strategy for grid computing. J. Comput. Sci. 3(3), 186–194 (2007)CrossRefGoogle Scholar
  8. 8.
    Yagoubi, B.: Modele d’equilibrage de charge pour les grilles de calcul. Rev. Afr. Rech. En Inform. Math. Appl. ARIMA 7, 1–19 (2007)Google Scholar
  9. 9.
    Yagoubi, B., Slimani, Y.: Load balancing strategy in grid environment. J. Inf. Technol. Appl. 1(4), 285–296 (2007)Google Scholar
  10. 10.
    Yagoubi, B., Meddeber, M.: Distributed load balancing model for grid computing. ARIMA 12, 43–60 (2010)Google Scholar
  11. 11.
    Sahoo, B., Jena, S.K., Mahapatra, S.: Load balancing in heterogeneous distributed computing systems using approximation algorithm. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Athens, pp. 38–43 (2013)Google Scholar
  12. 12.
    Bawa, R.K., Singh, R.: Comparative analysis of fault tolerance techniques in grid environment. Int. J. Comput. Appl. 41, 21–25 (2012).  https://doi.org/10.5120/5505-7520CrossRefGoogle Scholar
  13. 13.
    Keerthika, P., Kasthuri, N.: A new proactive fault tolerant approach for scheduling in computational grid. In: Proceedings of the International Conference on Web Services Computing (ICWSC 2011), IJCA, pp. 55–59 (2011)Google Scholar
  14. 14.
    Kokilavani, T., George Amalarethinam, D.I.: Load balanced min-min algorithm for static meta-task scheduling in grid computing. Int. J. Comput. Appl. (IJCA) 20(2), 43–49 (2011)Google Scholar
  15. 15.
    Anousha, S., Ahmadi, M.: An improved Min–Min task scheduling algorithm in grid computing. In: Proceedings of the International Conference on Grid and Pervasive Computing (GPC 2013). Lecture Notes in Computer Science, vol. 7861, pp. 103–113. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Parsa, S., Entezari-Maleki, R.: RASA: a new grid task scheduling algorithm. Int. J. Digit. Content Technol. Appl. 3(4), 91–99 (2009)Google Scholar
  17. 17.
    Kumar, A., Pathak, H.: Dynamic load balancing for computation grids using binary heaps (DLBCHBH – H / D). Int. J. Comput. Sci. Eng. 6(5), 270–277 (2018). (2347 – 2693)Google Scholar
  18. 18.
    Kumar, A., Pathak, H.: Fuzzy min – max scheduling (FMiMaS). Int. J. Comput. Sci. Eng. 6(6), 567–575 (2018)Google Scholar
  19. 19.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceGurukul Kangri VishwavidyalayaHaridwarIndia

Personalised recommendations