The Security Challenges, Issues and Countermeasures in Spatiotemporal Data: A Survey

  • M. AdimoolamEmail author
  • M. Sugumaran
  • R. S. Rajesh
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 26)


In recent decades, the Wireless Sensor Network (WSN) is used in potential areas like battlefield surveillance, border security surveillance, disaster management, forest monitoring system, ocean surveillance and real time navigation system. The WSN’s generates a large amount of spatiotemporal data. Providing the data security in WSN is itself challenging task. So when the spatiotemporal data needs to be handled, the security mechanisms demands more careful strategies to be adopted. In order to provide security for spatiotemporal data, the following concepts such as secure access control, log management, security model, activity pattern, secure range queries for legitimate users, key management, privacy preservations and secure spatiotemporal data applications are studied here. In this paper, to facilitate an effective security mechanism for spatiotemporal data in WSN, the above said security related mechanisms are discussed in detail.


Spatiotemporal data security Secure access control Secured range queries Attack detection 


  1. 1.
    Michael, S.K., Gabriel, G., Elisa, B.: Privacy-preserving enforcement of spatially aware RBAC. IEEE Trans. Dependable Secure Comput. 9(5), 627–640 (2012)Google Scholar
  2. 2.
    Fuguang, M., Yong, G., Menglong, Y., Fuchun, X., Ding, L.: The fine-grained security access control of spatial data. In: IEEE 18th International Conference on Geoinformatics, pp. 1–4 (2010)Google Scholar
  3. 3.
    Ammar, M., Arif, G., Aditya, M.: Conformance testing of temporal role-based access control systems. IEEE Trans. Dependable Secure Comput. 7(2), 144–158 (2010)CrossRefGoogle Scholar
  4. 4.
    Rashid, Z., Abdul, B., Zahid, A.: TRDBAC: temporal reflective database access control. In: IEEE 6th International Conference on Emerging Technologies, pp. 337–342. (2010)Google Scholar
  5. 5.
    Menglong, Y., Yong, G., Lun, W., Pengfei, W.Y.Z., Yixian, S.: Spatial data access control in grid environment. In: IEEE 17th International Conference on Geoinformatics, pp. 1–6 (2009)Google Scholar
  6. 6.
    Zeng, Y.H., Zu-Kuan, W., Qian, Y.: Research on spatial database: a secure access mechanism. In: Sixth International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2174–2178 (2007)Google Scholar
  7. 7.
    Shibo, H., Gang, L., Zhenwen, H., Zhengping W.: Design and implementation of log management module in three-dimensional spatial database management system. In: IEEE 18th International Conference on Geoinformatics, pp. 1–5 (2010)Google Scholar
  8. 8.
    Nazerfard, E., Parisa, R., Diane J.C.: Discovering temporal features and relations of activity patterns. In: IEEE International Conference on Data Mining Workshops, pp. 1069–1075 (2010)Google Scholar
  9. 9.
    Yanqun, Z., Wang Q.: Security model for distributed GIS spatial data. In: International Symposium on Information Science and Engineering, vol. 2, pp. 641–645 (2008)Google Scholar
  10. 10.
    Shi, J., Yanchao, Z.: A spatiotemporal approach for secure range queries in tiered sensor networks. IEEE Trans. Wireless Commun. 10(1), 264–273 (2011)CrossRefGoogle Scholar
  11. 11.
    Rui, Z., Jingchao, S., Yanchao, Z., Chi, Z.: Secure spatial top-k query processing via untrusted location-based service providers. IEEE Trans. Dependable Secure Comput. 12(1), 1170–1178 (2015)Google Scholar
  12. 12.
    Chen, C., Michael, A.J.: Secret key establishment using temporally and spatially correlated wireless channel coefficients. IEEE Trans. Mob. Comput. 10(2), 205–215 (2011)CrossRefGoogle Scholar
  13. 13.
    Sheng, G., Jianfeng, M., Weisong, S., Guoxing, Z., Cong, S.: TrPF: a trajectory privacy-preserving framework for participatory sensing. IEEE Trans. Inf. Forensics Secur. 8(6), 874–887 (2013)CrossRefGoogle Scholar
  14. 14.
    Nighat, J., Arshad, A.: A unified approach to secure and robust hashing scheme for image and video authentication. In: IEEE 3rd International Congress on Image and Signal Processing, vol. 1, pp. 274–278 (2010)Google Scholar
  15. 15.
    Kyriacos, E.P., Richard, T.S.: The tiled bitmap forensic analysis algorithm. IEEE Trans. Knowl. Data Eng. 22(4), 590–601 (2010)CrossRefGoogle Scholar
  16. 16.
    Azedine, B., Lamia, K., Adil, E., Ahmed, L.: A system architecture for heterogeneous moving-object trajectory metamodel using generic sensors: Tracking airport security case study. IEEE Syst. J. 9(1), 1–9 (2015)CrossRefGoogle Scholar
  17. 17.
    Toahchoodee, M., Indrakshi, R., Kyriakos, A., Geri, G., Behzad, B.: Ensuring spatio-temporal access control for real-world applications. In: 14th ACM Symposium on Access Control Models and Technologies, pp. 13–22 (2009)Google Scholar
  18. 18.
    Yin, Y., Haomian, Z., Zhu, L., David, Z.: Video action recognition with spatio-temporal graph embedding and spline modeling. In: IEEE International Conference on Acoustics Speech and Signal Processing, pp. 2422–2425 (2010)Google Scholar
  19. 19.
    Michele, M., Clement, A., Christelle, V., Nadine, G., Frédéric, B., Roselyne, L., Herman, E., Olivier, L.: Evaluation of agreement between space remote sensing SPOT-VEGETATION fAPAR time series. IEEE Trans. Geosci. Remote Sens. 51(4), 1951–1962 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringSri Venkateswara College of EngineeringChennaiIndia
  2. 2.Department of Computer Science and EngineeringPondicherry Engineering CollegePuducherryIndia
  3. 3.Department of Computer Science and EngineeringManonmaniam Sundaranar UniversityTirunelveliIndia

Personalised recommendations