Advertisement

Blended Cognition: The Robotic Challenge

  • Jordi VallverdúEmail author
Chapter
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 12)

Abstract

This chapter is a transdisciplinary study on the fundaments of cognition, considering this process at human level as the combination of biological and (multi)cultural values. The main idea is to describe the skill of human beings for using several heuristics for task-solving activities as a process of combining and blending techniques, something that is called here as “blended cognition”. This rich and complex way of dealing with multi-heuristic frameworks provides not only a more adequate model for the understanding of real human cognition, but also it is of the most interest for the design of creative and adaptive artificial intelligences.

Keywords

Multimodal Blended cognition Multi-heuristics Emotions Evolutionary Bias Challenge Biomimetic 

Notes

Acknowledgments

I thank Pilar Dellunde for her advice about logical analysis and AI, Alger Sans for his suggestions about abductive reasoning, and Sarah Làzare for her support during this long process, blending our personal, work, and leisure times around such project. This work has been partially funded by the project FFI2017-85711-P.

References

  1. Aavik T, Abu-Hilal M, Ahmad FZ, Ahmed RA, Alarco B, Amponsah B, … Zhang Y (2006) A world of lies. J Cross-Cult Psychol.  https://doi.org/10.1177/0022022105282295
  2. Adamatzky A (2016) Advances in physarum machines: sensing and computing with slime mould. Springer, Cham.  https://doi.org/10.1007/978-3-319-26662-6 CrossRefGoogle Scholar
  3. Adamatzky A, Armstrong R, Jones J, Gunji Y-P (2013) On creativity of slime mould. Int J Gen Syst 42(5):441–457.  https://doi.org/10.1080/03081079.2013.776206 CrossRefGoogle Scholar
  4. Arfini S, Magnani L (2015) An eco-cognitive model of ignorance immunization. Stud Appl Philos Epistemol Ration Ethics 20:59–75.  https://doi.org/10.1007/978-3-319-18479-1_4 CrossRefGoogle Scholar
  5. Axelrod R (2004) Robert Axelrod, The Evolution of Cooperation, New York 1984. Basic Books, New York.  https://doi.org/10.1007/978-3-531-90400-9_7 CrossRefGoogle Scholar
  6. Barker P (2000) The role of religion in the Lutheran response to Copernicus. In: Rethinking the scientific revolution. Cambridge University Press, Cambridge, pp 59–88CrossRefGoogle Scholar
  7. Barsalou LW (2008) Grounded cognition. Annu Rev Psychol 59(August):617–645.  https://doi.org/10.1146/annurev.psych.59.103006.093639 CrossRefPubMedGoogle Scholar
  8. Barsalou LW, Simmons WK, Barbey AK, Wilson CD (2003) Grounding conceptual knowledge in modality-specific systems. Trends Cogn Sci 7:84–91.  https://doi.org/10.1016/S1364-6613(02)00029-3 CrossRefPubMedGoogle Scholar
  9. Barsalou LW, Breazeal C, Smith LB (2007) Cognition as coordinated non-cognition. Cogn Process 8:79–91.  https://doi.org/10.1007/s10339-007-0163-1 CrossRefPubMedGoogle Scholar
  10. Bartha P (2013) Analogy and analogical reasoning. Stanf Encycl Philos 1–35. Retrieved from http://plato.stanford.edu/archives/fall2013/entries/reasoning-analogy/
  11. Baylor GW (2001) What do we really know about Mendeleev’s dream of the periodic table? A note on dreams of scientific problem solving. Dreaming 11(2):89–92.  https://doi.org/10.1023/A:1009484504919 CrossRefGoogle Scholar
  12. Beretti A, Grolleau G, Mzoughi N (2009) How cognitive biases can affect the performance of eco-labeling schemes. J Agric Food Ind Organ 7(2).  https://doi.org/10.2202/1542-0485.1276
  13. Berliner D, Lambek M, Shweder R, Irvine R, Piette A, Piette A (2016) Anthropology and the study of contradictions. HAU: J Ethnographic Theory 6(1):1–27.  https://doi.org/10.14318/hau6.1.002 CrossRefGoogle Scholar
  14. Bochman A (2001) A logical theory of nonmonotonic inference and belief change. Springer, BerlinCrossRefGoogle Scholar
  15. Bridges MW, Distefano S, Mazzara M, Minlebaev M, Talanov M, Vallverdú J (2015) Towards anthropo-inspired computational systems: the P3 model. In: Smart innovation, systems and technologies, vol 38. Springer, Berlin, pp 311–321.  https://doi.org/10.1007/978-3-319-19728-9_26 CrossRefGoogle Scholar
  16. Buchtel EE, Norenzayan A (2008) Which should you use, intuition or logic? Cultural differences in injunctive norms about reasoning. Asian J Soc Psychol 11(4):264–273.  https://doi.org/10.1111/j.1467-839X.2008.00266.x CrossRefGoogle Scholar
  17. Burke EK, Silva JDL, Soubeiga E (2005) Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Ibaraki T, Nonobe K, Yagiura M (eds) Metaheuristics: progress as real problem solvers. Springer, New York, pp 129–158.  https://doi.org/10.1007/0-387-25383-1_6 CrossRefGoogle Scholar
  18. Calame C (2002) The rhetoric of muthos and logos: forms of figurative discourse. In: From myth to reason: studies in the development of Greek thought. Oxford University Press, Oxford, pp 119–144Google Scholar
  19. Campbell JID, Xue Q (2001) Cognitive arithmetic across cultures. J Exp Psychol Gen 130(2):299–315.  https://doi.org/10.1037/0096-3445.130.2.299 CrossRefPubMedGoogle Scholar
  20. Casacuberta D, Vallverdú J (2015) Emotions and social evolution: a computational approach. In: Handbook of research on synthesizing human emotion in intelligent systems and robotics. IGI Global, Hershey.  https://doi.org/10.4018/978-1-4666-7278-9.ch004 CrossRefGoogle Scholar
  21. Čavar F, Tytus AE (2017) Moral judgement and foreign language effect: when the foreign language becomes the second language. Stud Comp Int Dev 0(0):1–12.  https://doi.org/10.1080/01434632.2017.1304397 CrossRefGoogle Scholar
  22. Chakhlevitch K, Cowling P (2008) Hyperheuristics: recent developments. Stud Comp Int.  https://doi.org/10.1007/978-3-540-79438-7_1
  23. Chalmers DJ (2011) Verbal disputes. Philos Rev 120:515–566.  https://doi.org/10.1215/00318108-1334478 CrossRefGoogle Scholar
  24. Costa A, Foucart A, Hayakawa S, Aparici M, Apesteguia J, Heafner J, Keysar B (2014a) Your morals depend on language. PLoS One 9(4):e94842.  https://doi.org/10.1371/journal.pone.0094842 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Costa A, Foucart A, Hayakawa S, Aparici M, Apesteguia J, Heafner J, Keysar B (2014b) Your morals depend on language. PLoS One 9(4):e94842.  https://doi.org/10.1371/journal.pone.0094842 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cressey D (2015) ‘Sleeping beauty’ papers slumber for decades. Nature.  https://doi.org/10.1038/nature.2015.17615
  27. Csikszentmihalyi M (2014) The systems model of creativity: the collected works of Mihaly Csikszentmihalyi. Springer, Dordrecht.  https://doi.org/10.1007/978-94-017-9085-7_9 CrossRefGoogle Scholar
  28. Damasio AR (1985) Understanding the mind’s will. Behav Brain Sci 8:589.  https://doi.org/10.1017/S0140525X00045167 CrossRefGoogle Scholar
  29. Damasio AR (1994) Descartes’ error: emotion, rationality and the human brain. Putnam, New York, p 352Google Scholar
  30. Damasio AR (1999) The feeling of what happens: body and emotion in the making of consciousness. Nature 401:1579.  https://doi.org/10.1176/appi.ps.51.12.1579 CrossRefGoogle Scholar
  31. Dancy J (2005) Ethics without principles. Clarendon Press, Oxford.  https://doi.org/10.1093/0199270023.001.0001 CrossRefGoogle Scholar
  32. Djulbegovic M, Beckstead J, Elqayam S, Reljic T, Kumar A, Paidas C, Djulbegovic B (2015) Thinking styles and regret in physicians. PLoS One 10(8):e0134038.  https://doi.org/10.1371/journal.pone.0134038 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dorfman J, Shames VA, Kihlstrom JF (1995) Intuition, incubation, and insight: implicit cognition in problem solving. In: Implicit cognition, pp 257–296.  https://doi.org/10.1093/acprof:oso/9780198523109.003.0007 CrossRefGoogle Scholar
  34. Dukas R (2004) Evolutionary biology of animal cognition. Annu Rev Ecol Evol Syst 35:347–374.  https://doi.org/10.1146/annurev.ecolsys.35.112202.130152 CrossRefGoogle Scholar
  35. Ekman P (1999) Basic emotions. In: Handbook of cognition and emotion, pp 45–60.  https://doi.org/10.1017/S0140525X0800349X CrossRefGoogle Scholar
  36. Engeström Y, Miettinen R, Punamäki R-L (1999) Perspectives on activity theory (learning in doing: social, cognitive and computational perspectives). Cambridge University Press, Cambridge Retrieved from https://www.amazon.com/Perspectives-Activity-Theory-Learning-Doing/dp/052143730X CrossRefGoogle Scholar
  37. Eysenck HJ (2003) Creativity, personality and the convergent-divergent continuum. In: Perspectives on creativity research. Critical creative processes. Hampton Press, Cresskill, pp 95–114Google Scholar
  38. Fauconnier G, Turner M (2008) The way we think: Conceptual blending and the mind’s hidden complexities. Basic BooksGoogle Scholar
  39. Frankfurt HG (1986) On bullshit. Princeton University Press, PrincetonGoogle Scholar
  40. Garrido P, Riff MC (2007) Collaboration between hyperheuristics to solve strip-packing problems. In: Foundations of fuzzy logic and soft computing, vol 4529 LNAI, pp 698–707.  https://doi.org/10.1007/978-3-540-72950-1_69 CrossRefGoogle Scholar
  41. Geipel J, Hadjichristidis C, Surian L (2015) The foreign language effect on moral judgment: the role of emotions and norms. PLoS One 10(7):e0131529.  https://doi.org/10.1371/journal.pone.0131529 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gigerenzer G (1991) How to make cognitive illusions disappear: beyond “heuristics and biases”. Eur Rev Soc Psychol 2(1):83–115.  https://doi.org/10.1080/14792779143000033 CrossRefGoogle Scholar
  43. Gigerenzer G (1996) On narrow norms and vague heuristics: a reply to Kahneman and Tversky. Psychol Rev 103(3):592–596.  https://doi.org/10.1037/0033-295X.103.3.592 CrossRefGoogle Scholar
  44. Gigerenzer G, Goldstein DG (1996) Reasoning the fast and frugal way: models of bounded rationality. Psychol Rev 103(4):650–669.  https://doi.org/10.1037/0033-295X.103.4.650 CrossRefPubMedGoogle Scholar
  45. Glas G (2005) In search for normativity of unconscious resasoning. Special Issue Unconscious.  https://doi.org/10.1353/ppp.2005.0023 CrossRefGoogle Scholar
  46. Hamill JF (1990) Ethno-logic: the anthropology of human reasoning. University of Illinois Press, UrbanaGoogle Scholar
  47. Hammerstein P, Stevens JR (2012) Evolution and the mechanisms of decision making. MIT Press, Cambridge, MACrossRefGoogle Scholar
  48. Harpham GG (2002) Language alone: the critical fetish of modernity. Routledge, LondonGoogle Scholar
  49. Hatfield GC (1979) Force (god) in descartes’ physics. Stud Hist Phil Sci 10(2):113–140.  https://doi.org/10.1016/0039-3681(79)90013-X CrossRefGoogle Scholar
  50. Heisig JW (2001) Philosophers of nothingness: an essay on the Kyoto school. University of Hawai’i Press, HonoluluGoogle Scholar
  51. Herring AH, Attard SM, Gordon-Larsen P, Joyner WH, Halpern CT (2013) Like a virgin (mother): analysis of data from a longitudinal, US population representative sample survey. BMJ 347(dec17 2):f7102–f7102.  https://doi.org/10.1136/bmj.f7102 CrossRefPubMedCentralGoogle Scholar
  52. Hoffman RR (1980) Metaphor in science. In: Cognition and figurative language, pp 393–423.  https://doi.org/10.1016/j.schres.2011.07.009 CrossRefGoogle Scholar
  53. Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG (2018) Numerical ordering of zero in honey bees. Science 360(6393):1124–1126.  https://doi.org/10.1126/science.aar4975 CrossRefPubMedGoogle Scholar
  54. Imai M (2000) Rethinking the Sapir-Whorf hypothesis: role of language in shaping thought. Shinrigaku Kenkyu 71(5):415–433.  https://doi.org/10.4992/jjpsy.71.415 CrossRefPubMedGoogle Scholar
  55. Jo H-G, Wittmann M, Hinterberger T, Schmidt S (2014) The readiness potential reflects intentional binding. Front Hum Neurosci 8.  https://doi.org/10.3389/fnhum.2014.00421
  56. Kahneman D, Tversky A (1979) Prospect theory – an analysis of decision under risk.pdf. Econometrica.  https://doi.org/10.2307/1914185 CrossRefGoogle Scholar
  57. Kay P, Kempton W (1984) What is the Sapir-Whorf hypothesis? Am Anthropol 86(1):65–79CrossRefGoogle Scholar
  58. Kuhn TS (1962) The structure of scientific revolutions. Structure, vol 2.  https://doi.org/10.1046/j.1440-1614.2002.t01-5-01102a.x CrossRefGoogle Scholar
  59. Kuhn T (1963) Scientific paradigms. In: Scientific change, vol 1, pp 347–369.  https://doi.org/10.1038/280091b0 CrossRefGoogle Scholar
  60. Kuhn TS (1976) Theory-change as structure-change: comments on the sneed formalism. Erkenntnis 10(2):179–199.  https://doi.org/10.1007/BF00204969 CrossRefGoogle Scholar
  61. Lackey J (2013) Disagreement and belief dependence: why numbers matter. In: The epistemology of disagreement, pp 243–266.  https://doi.org/10.1093/acprof:oso/9780199698370.003.0012 CrossRefGoogle Scholar
  62. Lakoff G, Johnson M (1997) Metaphors we live by. The production of reality: essays and reading on social interaction.  https://doi.org/10.1016/0024-3841(82)90031-6
  63. Lambek M, Shweder R, Irvine R, Piette A, Berliner D (2016) Anthropology as the science of contradictions. J Ethnographic Theory 6(1):1–27.  https://doi.org/10.14318/hau6.1.002 CrossRefGoogle Scholar
  64. Larivière V, Gingras Y, Archambault É (2009) The decline in the concentration of citations, 1900–2007. J Am Soc Inf Sci Technol 60(4):858–862.  https://doi.org/10.1002/asi.21011 CrossRefGoogle Scholar
  65. Levine DS, Perlovsky LI (2010) Emotion in the pursuit of understanding. Int J Synth Emot 1(2):1–11.  https://doi.org/10.4018/jse.2010070101 CrossRefGoogle Scholar
  66. Lewis MK (2012) New dogs, old tricks. Why do Ponzi schemes succeed? Account Forum 36(4):294–309.  https://doi.org/10.1016/j.accfor.2011.11.002 CrossRefGoogle Scholar
  67. Lieberman MD (2000) Intuition: a social cognitive neuroscience approach. Psychol Bull 126(1):109–137.  https://doi.org/10.1037//0033-2909.126.1.109 CrossRefPubMedGoogle Scholar
  68. Lu Y (2015) Is experiential-intuitive cognitive style more inclined to err on conjunction fallacy than analytical-rational cognitive style? .Front Psychol Retrieved from http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00085
  69. Magnani L (2016) Abduction and its eco-cognitive openness. In: Studies in applied philosophy, epistemology and rational ethics, vol 27, pp 453–468.  https://doi.org/10.1007/978-3-319-38983-7_25 CrossRefGoogle Scholar
  70. Mills CM, Al-Jabari RM, Archacki MA (2012) Why do people disagree? Explaining and endorsing the possibility of partiality in judgments. J Cogn Dev 13(1):111–136.  https://doi.org/10.1080/15248372.2010.547236 CrossRefGoogle Scholar
  71. Mirowski P (2012) The modern commercialization of science is a passel of Ponzi schemes. Soc Epistemol 26(3–4):285–310.  https://doi.org/10.1080/02691728.2012.697210 CrossRefGoogle Scholar
  72. Moore TW, Snider JB, Luchini M (2011) Thinking style and emotional intelligence: an empirical investigation. J Behav Stud Business 1–16Google Scholar
  73. Moravčík M, Schmid M, Burch N, Lisý V, Morrill D, Bard N, … Bowling M (2017) DeepStack: expert-level artificial intelligence in heads-up no-limit poker. Science. Retrieved from http://science.sciencemag.org/content/early/2017/03/01/science.aam6960.abstract
  74. Nisbet RE (2003) The geography of thought: how Asians and Westerners think differently…and Why: Richard E. Nisbett: 9780743255356: Amazon.com: Books. New York: Free Press (Simon & Schuster, Inc.). Retrieved from https://www.amazon.com/Geography-Thought-Asians-Westerners-Differently/dp/0743255356
  75. O’Hara B (2011) Negative results are published. Nature 471(7339):448–449.  https://doi.org/10.1038/471448e CrossRefPubMedGoogle Scholar
  76. Oreskes N, Conway EM (2010) Merchants of doubt: how a handful of scientists obscured the truth on issues from tobacco smoke to global warming. Bloomsbury Press, LondonGoogle Scholar
  77. Parrondo JMR, Horowitz JM, Sagawa T (2015) Thermodynamics of information.  https://doi.org/10.1038/NPHYS3230 CrossRefGoogle Scholar
  78. Perlovsky LI, Levine DS (2012) The drive for creativity and the escape from creativity: neurocognitive mechanisms. Cogn Comput 4(3):292–305.  https://doi.org/10.1007/s12559-012-9154-3 CrossRefGoogle Scholar
  79. Porter SL, Wadhams GH, Armitage JP (2011) Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 9(3):153–165.  https://doi.org/10.1038/nrmicro2505 CrossRefPubMedGoogle Scholar
  80. Pöyhönen S (2017) Value of cognitive diversity in science. Synthese 194(11):4519–4540.  https://doi.org/10.1007/s11229-016-1147-4 CrossRefGoogle Scholar
  81. Reynolds J (2011) The Sokal Hoax fifteen years later: a philosophical reading of the controversy. Retrieved from http://www.spikemagazine.com/the-sokal-hoax.php
  82. Rusconi E, Galfano G, Job R (2007) Bilingualism and cognitive arithmetic. In: Cognitive aspects of bilingualism, pp 153–174.  https://doi.org/10.1007/978-1-4020-5935-3_5 CrossRefGoogle Scholar
  83. Russel B (1953) A history of Western philosophy. Philos Phenomenol Res 14(1):132.  https://doi.org/10.2307/2104034 CrossRefGoogle Scholar
  84. Scherer KR (2005) What are emotions? And how can they be measured? Soc Sci Inf 44(4):695–729.  https://doi.org/10.1177/0539018405058216 CrossRefGoogle Scholar
  85. Schroeder MJ, Vallverdú J (2015) Situated phenomenology and biological systems: eastern and Western synthesis. Prog Biophys Mol Biol.  https://doi.org/10.1016/j.pbiomolbio.2015.06.019 CrossRefGoogle Scholar
  86. Seifert U (2012) Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep Prog Phys Phys Soc (Great Brit) 75(12):126001.  https://doi.org/10.1088/0034-4885/75/12/126001 CrossRefGoogle Scholar
  87. Siegler RS, Stern E (1998) Conscious and unconscious strategy discoveries: a microgenetic analysis. J Exp Psychol Gen 127(4):377–397.  https://doi.org/10.1037/0096-3445.127.4.377 CrossRefPubMedGoogle Scholar
  88. Sinclair M (2010) Misconceptions about intuition. Psychol Inq 21(4):378–386.  https://doi.org/10.1080/1047840X.2010.523874 CrossRefGoogle Scholar
  89. Slack JD, Semati MM (1997) Intellectual and political hygiene: the “Sokal affair”. Crit Stud Mass Commun 14(3):201–227CrossRefGoogle Scholar
  90. Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C (2013) Approximate Bayesian computation. PLoS Comput Biol 9(1):e1002803.  https://doi.org/10.1371/journal.pcbi.1002803 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Taggart W, Valenzi E (1990) Assessing rational and intuitive styles: a human information processing metaphor. J Manag Stud 27(2):149–172.  https://doi.org/10.1111/j.1467-6486.1990.tb00758.x CrossRefGoogle Scholar
  92. Teng J (2013) Bias dilemma: de-biasing and the consequent introduction of new biases. SSRNGoogle Scholar
  93. Thaler RH (2000) From Homo Economicus to Homo Sapiens. J Econ Perspect 14(1):133–141CrossRefGoogle Scholar
  94. Trémolière B, Gagnon MÈ, Blanchette I (2016) Cognitive load mediates the effect of emotion on analytical thinking. Exp Psychol 63(6):343–350.  https://doi.org/10.1027/1618-3169/a000333 CrossRefPubMedGoogle Scholar
  95. Vallverdu J (2015) Handbook of research on synthesizing human emotion in intelligent systems and robotics. In: Advances in Computational Intelligence and Robotics (ACIR) book series.  https://doi.org/10.4018/978-1-4666-7278-9
  96. Vallverdú J (2016) Bayesians versus frequentists. Springer, Berlin/Heidelberg.  https://doi.org/10.1007/978-3-662-48638-2 CrossRefGoogle Scholar
  97. Vallverdú J (2017a) Brains, language and the argumentative mind in Western and eastern societies. The fertile differences between Western-eastern argumentative traditions. Prog Biophys Mol Biol 131:424–431.  https://doi.org/10.1016/j.pbiomolbio.2017.09.002 CrossRefPubMedGoogle Scholar
  98. Vallverdú J (2017b) Brains, language and the argumentative mind in Western and eastern societies. The fertile differences between Western-eastern argumentative traditions. Prog Biophys Mol Biol 131:424–431.  https://doi.org/10.1016/j.pbiomolbio.2017.09.002 CrossRefPubMedGoogle Scholar
  99. Vallverdú J (2017c) In: Victor Callaghan SA, Miller J, Yampolskiy R (eds) The emotional nature of post-cognitive singularities. Springer, Berlin/Heidelberg, pp 193–208.  https://doi.org/10.1007/978-3-662-54033-6_11 CrossRefGoogle Scholar
  100. Vallverdú J (2018) Re-embodying cognition with the same “biases”? Int J Eng Future Technol™ 15(1):23–30Google Scholar
  101. Vallverdú J, Casacuberta D (2008) The panic room: on synthetic emotions. In: Frontiers in artificial intelligence and applications, vol 175, pp 103–115 Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84875966199&partnerID=tZOtx3y1 Google Scholar
  102. Vallverdú J, Schroeder MJ (2017) Lessons from culturally contrasted alternative methods of inquiry and styles of comprehension for the new foundations in the study of life. Prog Biophys Mol Biol.  https://doi.org/10.1016/j.pbiomolbio.2017.09.001 CrossRefGoogle Scholar
  103. Vallverdu J, Trovato G (2016) Emotional affordances for human-robot interaction. Adapt Behav 1059712316668238:320–334.  https://doi.org/10.1177/1059712316668238 CrossRefGoogle Scholar
  104. Vallverdú J, Trovato G (2016) Emotional affordances for human-robot interaction. Adapt Behav 24(5):320–334.  https://doi.org/10.1177/1059712316668238 CrossRefGoogle Scholar
  105. Vallverdú J, Talanov M, Distefano S, Mazzara M, Tchitchigin A, Nurgaliev I (2015) A Cognitive architecture for the implementation of emotions in computing systems. Biol Inspired Cogn Archit 15:34–40.  https://doi.org/10.1016/j.bica.2015.11.002 CrossRefGoogle Scholar
  106. Vallverdú J, Nishida T, Ohmoto Y, Moran S, Lázare S (2018) Fake empathy and human- robot interaction (HRI): a preliminary study. Int J Technol Hum Interact 14(1):44–59.  https://doi.org/10.4018/IJTHI.2018010103 CrossRefGoogle Scholar
  107. Van Raan AFJ (2004) Sleeping beauties in science. Scientometrics 59(3):467–472.  https://doi.org/10.1023/B:SCIE.0000018543.82441.f1 CrossRefGoogle Scholar
  108. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5(12):1024–1037.  https://doi.org/10.1038/nrm1524 CrossRefPubMedGoogle Scholar
  109. Welling M (2010) Approximate inference. Tutorial 1–10Google Scholar
  110. Westfall RS (2000) The scientific revolution reasserted. In: Rethinking the scientific revolution. Cambridge University Press, Cambridge, pp 41–55CrossRefGoogle Scholar
  111. Whitehouse H (2011) The coexistence problem in psychology, anthropology, and evolutionary theory. Hum Dev 54(3):191–199.  https://doi.org/10.1159/000329149 CrossRefGoogle Scholar
  112. Xu Q, Mytkowicz T, Kim NS (2016) Approximate computing: a survey. IEEE Des Test 33(1):8–22.  https://doi.org/10.1109/MDAT.2015.2505723 CrossRefGoogle Scholar
  113. Yang Z, Jain A, Liang J, Han J, Lombardi F (2013) Approximate XOR/XNOR-based adders for inexact computing. In: Proceedings of the IEEE conference on nanotechnology, pp 690–693.  https://doi.org/10.1109/NANO.2013.6720793 CrossRefGoogle Scholar
  114. Zilberman DB (2006) In: Gourko H, Cohen RS (eds) Analogy in Western philosophy and Indian approaches to analogy. Springer-Verlag, Berlin/Heidelberg.  https://doi.org/10.1007/1-4020-3340-0_3 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG (outside the USA) 2019

Authors and Affiliations

  1. 1.Department of PhilosophyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain

Personalised recommendations