Evolutionary Multi Optimization Business Process Designs Using MR-Sort NSGAII

  • Nadir Mahammed
  • Sidi Mohamed Benslimane
  • Ali Ouldkradda
  • Mahmoud Fahsi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11005)


In this paper, a research was carried out on the problem of evolutionary multi objective business process optimization. It does involve (i) to construct feasible business process designs with optimum attributes, and (ii) to classify the obtained solutions using a simple and scientific approach understandable by the decision maker. The business process evolutionary multi objective optimization (BPMOO) approach involves the generation of a series of diverse optimized business process designs for the same process requirements using an evolutionary algorithm (EA). The work presented in this paper is aimed to investigate the benefits that come from the utilization of multiple-criteria decision analysis methods (MCDA) with an evolutionary multi objective optimization algorithms (EMOA) execution process. The experimental results clearly bring that the proposed optimization Framework is capable of producing an acceptable number of optimized design alternatives to simplify the decision maker’s choice of solutions in a reasonable runtime.


Multi objective optimization Evolutionary algorithm Business process Multiple-criteria decision analysis 


  1. 1.
    Coello, C.A.C.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Pareto, V.: Cours d’Economie Politique, vol. I and II. F. Rouge, Lausanne (1896)Google Scholar
  3. 3.
    Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 5. Springer, New York (2007). Scholar
  4. 4.
    Deb, K., Goel, T.: Controlled elitist non-dominated sorting genetic algorithms for better convergence. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 67–81. Springer, Heidelberg (2001). Scholar
  5. 5.
    Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithm. In: 1st International Conference of GA and their Application, pp. 93–100 (1985)Google Scholar
  6. 6.
    Mahammed, N., Benslimane, S.M.: Toward multi criteria optimization of business processes design. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J.M., Aït-Ameur, Y. (eds.) MEDI 2016. LNCS, vol. 9893, pp. 98–107. Springer, Cham (2016). Scholar
  7. 7.
    Goel, T., Vaidyanathan, R., Haftka, R.T., Shyy, W., Queipo, N.V., Tucker, K.: Response surface approximation of pareto optimal front in multi-objective optimization. Comput. Methods Appl. Mech. Eng. 196(4), 879–893 (2007)CrossRefGoogle Scholar
  8. 8.
    Hofacker, I., Vetschera, R.: Algorithmical approaches to business process design. Comput. Oper. Res. 28(13), 1253–1275 (2001)CrossRefGoogle Scholar
  9. 9.
    Vergidis, K., Tiwari, A., Majeed, B.: Business process improvement using multi-objective optimisation. BT Technol. J. 24(2), 229–235 (2006)CrossRefGoogle Scholar
  10. 10.
    Vergidis, K., Saxena, D., Tiwari, A.: An evolutionary multi-objective framework for business process optimisation. Appl. Soft Comput. 12(8), 2638–2653 (2012)CrossRefGoogle Scholar
  11. 11.
    Vergidis, K., Turner, C., Alechnovic, A., Tiwari, A.: An automated optimisation framework for the development of re-configurable business processes: a web services approach. Int. J. Comput. Integr. Manuf. 28(1), 41–58 (2015)CrossRefGoogle Scholar
  12. 12.
    Georgoulakos, K., Vergidis, K., Tsakalidis, G., Samaras, N.: Evolutionary multi-objective optimization of business process designs with pre-processing. In: IEEE Congress on CEC 2017, pp. 897–904. IEEE (2017)Google Scholar
  13. 13.
    Wibig, M.: Dynamic programming and genetic algorithm for business processes optimisation. Int. J. Intell. Syst. Appl. 5(1), 44 (2012)Google Scholar
  14. 14.
    Farsani, S.T., Aboutalebi, M., Motameni, H.: Customizing NSGAII to optimize business processes designs. Res. J. Recent Sci. 2, 74–79 (2013)CrossRefGoogle Scholar
  15. 15.
    Mahammed, N., Benslimane, S.M.: An evolutionary algorithm based approach for business process multi-criteria optimization. IJOCI 7(2), 34–53 (2017)Google Scholar
  16. 16.
    Mahammed, N., Benslimane, S., Hamdani, N.: Evolutionary multi-objective optimization of business process designs with MA-NSGAII. In: Amine, A., Mouhoub, M., Ait Mohamed, O., Djebbar, B. (eds.) CIIA 2018. IAICT, vol. 522, pp. 341–351. Springer, Cham (2018). Scholar
  17. 17.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multi objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  18. 18.
    Bouyssou, D., Marchant, T.: An axiomatic approach to noncompensatory sorting methods in MCDM, I. Eur. J. Oper. Res. 178(1), 217–245 (2007)CrossRefGoogle Scholar
  19. 19.
    Yu, W.: Aide multicritère à la décision dans le cadre de la problématique du tri: concepts, méthodes et applications, Doctoral dissertation, Paris 9 (1992)Google Scholar
  20. 20.
    Roy, B., Bouyssou, D.: Aide multicritère à la décision: méthodes et cas. Economica, Paris (1993)Google Scholar
  21. 21.
    Sobrie, O., Mousseau, V., Pirlot, M.: Learning the parameters of a non compensatory sorting model. In: Walsh, T. (ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. 153–170. Springer, Cham (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nadir Mahammed
    • 1
  • Sidi Mohamed Benslimane
    • 1
  • Ali Ouldkradda
    • 2
  • Mahmoud Fahsi
    • 3
  1. 1.LabRI-SBAEcole Supérieure en InformatiqueSidi Bel AbbesAlgeria
  2. 2.LRIIR LaboratoryAhmed Ben Bella University of Oran 1OranAlgeria
  3. 3.EEIDIS LaboratoryDjillali Liabes University Sidi Bel AbbesSidi Bel AbbesAlgeria

Personalised recommendations