Advertisement

Arp Attack Detection Software Poisoning and Sniffers in WLAN Networks Implementing Supervised Machine Learning

  • Nicolas Ricardo Enciso
  • Octavio José Salcedo ParraEmail author
  • Erika Upegui
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11005)

Abstract

Nowadays, the growing number of mobile device users such as tablets and smart phones, has shown an increase of wireless network usage (Wi-Fi). At the same time, the number of attacks against this network has been growing too, taking advantage of vulnerabilities typical of protocols such as ARP and 802.11 as shown in a study done by Verizon on social network attacks. The proposal is to create a tool capable of detecting man in the middle attacks such as ARP poisoning/spoofing and network sniffers that use NICs in monitor mode. A machine learning algorithm is then generated which is trained with data from networks being attacked or neutral to later be able to classify incoming network data and catalog them as an attack alert or not.

Keywords

Supervised machine learning MITM attacks ARP table NIC’s monitor mode Packages sniffers 

References

  1. 1.
    Verizon 2017 Data Breach Investigations Report, DBIR (2017). http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/. Accessed 23 Oct 2017
  2. 2.
    Kumar, S., Viinikainen, A., Hamalainen, T.: Machine learning classification model for network based intrusion detection system. In: 11th International Conference for Internet Technology and Secured Transactions (ICITST) (2016)Google Scholar
  3. 3.
    Limthing, K., Tawsook, T.: Network traffic anomaly detection using machine learning approaches. Computer Engineering Department, Bngkok University (2015)Google Scholar
  4. 4.
    Sanai, D.: Detection of promiscuous nodes using ARP packets (2002). A white paper from http://www.securityfriday.com
  5. 5.
    Fleck, B., Potter, B.: 802.11 Security Securing Wireless Networks. O’Reily, New York (2015)Google Scholar
  6. 6.
    McClure, S., Scambray, J., Kurtz, G.: Hacking Exposed 7: Network Security Secrets & Solutions. McGraw Hil, New York (2016)Google Scholar
  7. 7.
    Van, N.T., Thinh, T.N., Sach, L.T.: An amomaly-based network intrusion detection system using deep learning. In: International Conference on System Science an Engineering (ICSSE) (2017)Google Scholar
  8. 8.
    Xu, Yuan, X., Yu, A., Kim, J.H., Kim, T., Zhang, J.: Developing and evaluating a hands-on lab for teaching local area network vulnerabilities. In: 2016 IEEE Frontiers in Education Conference (FIE), Erie, PA, USA, pp. 1–4 (2016).  https://doi.org/10.1109/FIE.2016.7757364
  9. 9.
    Fukuyama, K., Taniguchi, Y., Iguchi, N.: A study on attacker agent in virtual machine-based network security learning system. In: IEEE 4ta Conferencia de electronica de consume, Universidad de Kink, Osaka Japón (2015)Google Scholar
  10. 10.
    Casas, P., Soro, F., Vanerio, J., Settanni, G., D’Alconzo, A.: Network security and anomaly detection with Big-DAMA, a big data analytics framework. In: 2017 IEEE 16va Conferencia internacional Cloud Networking (CloudNet), República Checa, Praga (2017)Google Scholar
  11. 11.
    Kakihata, E.M., et al.: Intrusion detection system based on flows using machine learning algorithms. IEEE Latin América Trans. 15, 1988–1993 (2017)CrossRefGoogle Scholar
  12. 12.
    Aminanto, M.E., Choi, R., Tanuwidjaja, H.C., Yoo, P.D., Kim, K.: Deep abstraction and weighted feature selection for Wi-Fi impersonation detection. IEEE Transactions Seguridad y forense de información PP, 1 (2017)Google Scholar
  13. 13.
    Yin, C., Zhu, Y., Fei, J., He, X.: A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access PP, 1 (2017). Laboratorio de ingeniería matemática y computación avanzada, Zhengzhou, ChinaGoogle Scholar
  14. 14.
    Alotaibi, B., Elleithy, K.: A majority voting technique for wireless intrusion detection systems. In: Conferencia de tecnología y aplicaciones en sistemas LISAT IEEE Long Island (2016)Google Scholar
  15. 15.
    Kolias, C., Kambourakis, G., Stavrou, A.: Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset. IEEE Encuestas de comunicaciones y tutoriales 18, 184–208 (2015). Universidad del Egeo, Samos, GreciaGoogle Scholar
  16. 16.
    Facultad de Ciencias UNAM: Espacios métricos. Universidad Nacional Autónoma de México, Facultad de ciencias, área de sistemas (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicolas Ricardo Enciso
    • 1
  • Octavio José Salcedo Parra
    • 1
    • 2
    Email author
  • Erika Upegui
    • 3
  1. 1.Department of Systems and Industrial Engineering, Faculty of EngineeringUniversidad Nacional de ColombiaBogotá D.C.Colombia
  2. 2.Faculty of Engineering, Intelligent Internet Research GroupUniversidad Distrital “Francisco José de Caldas”Bogotá D.C.Colombia
  3. 3.Faculty of Engineering, GRSS-IEEE/UD & GEFEM Research GroupUniversidad Distrital “Francisco José de Caldas”Bogotá D.C.Colombia

Personalised recommendations