Advertisement

Location Assignment of Capacitated Services in Smart Cities

  • Gerbrich Hoekstra
  • Frank PhillipsonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11005)

Abstract

This paper introduces the Multi-Service Capacitated Facility Location Problem for assigning equipment to access points. Here multiple services should be offered to customers in a Smart City context. Purpose is to offer the total of services to fulfil the customer demand, given the coverage of the service and their capacity constraints. The problem is formulated and some practical results are presented solving the problem as an Integer Linear Programming Problem.

Keywords

Smart city Planning Facility Location Optimization 

References

  1. 1.
    Akinc, U., Khumawala, B.: An efficient branch and bound heuristic for the capacitated warehoues location problem. Manage. Sci. 23(6), 585–594 (1977)zbMATHGoogle Scholar
  2. 2.
    Albino, V., Berardi, U., Dangelico, R.M.: Smart cities: definitions, dimensions, performance, and initiatives. J. Urban Technol. 22(1), 3–21 (2015)Google Scholar
  3. 3.
    Balinski, M., Quandt, R.: On an integer program for a delivery problem. Oper. Res. 12, 300–304 (1964)Google Scholar
  4. 4.
    Bao, S., Xiao, N., Lai, Z., Zhang, H., Kim, C.: Optimizing watchtower locations for forest fire monitoring using location models. Fire Saf. J. 72, 100–109 (2015)Google Scholar
  5. 5.
    Barcelo, J., Casanovas, J.: A heuristic lagrangian algorithm for the capacitated plant location problem. Eur. J. Oper. Res. 15, 212–226 (1984)zbMATHGoogle Scholar
  6. 6.
    Brown, G., Graves, G., Ronen, D.: Scheduling ocean transportation of crude oil. Manage. Sci. 33, 335–346 (1987)Google Scholar
  7. 7.
    Calvillo, C., Sànchez-Miralles, A., Villar, J.: Energy management and planning in smart cities. Renew. Sustain. Energy Rev. 55, 273–287 (2016)Google Scholar
  8. 8.
    Canel, C., Khumawala, B., Law, J., Loh, A.: An algorithm for the capacitated, multi-commodity, multi-period facility location problem. Comput. Oper. Res. 28, 411–427 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Oper. Res. 47(5), 730–743 (1999)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cornuéjols, G., Nemhauser, G., Wolsey, L.: The uncapacitated facility location problem. In: Mirchandani, P., Francis, R. (eds.) Discrete location Theory, pp. 119–171. Wiley, New York (1990)Google Scholar
  11. 11.
    Desrochers, M., Soumis, F.: A column generation approach to the urban transit crew scheduling problem. Transp. Sci. 23, 1–13 (1989)zbMATHGoogle Scholar
  12. 12.
    Farahani, R., Asgari, N., Heidari, N.: Covering problems in facility location: a review. Comput. Ind. Eng. 62(1), 368–407 (2012)Google Scholar
  13. 13.
    Feldman, E., Lehrer, F., Ray, T.: Warehouse location under continuous economies of scale. Manage. Sci. 12, 670–684 (1966)Google Scholar
  14. 14.
    Filippini, I., Cesana, M.: Topology optimization for hybrid optical/wireless access networks. Ad Hoc Netw. 8, 614–625 (2010)Google Scholar
  15. 15.
    Fisher, M., Rosenwein, M.: An interactive optimisation system for bulk-cargo ship scheduling. Nav. Res. Logist. 36, 27–42 (1989)Google Scholar
  16. 16.
    Fisk, J.: A solution procedure for a special type of capacitated warehouse location problem. Logist. Transp. Rev. 13, 305–320 (1978)Google Scholar
  17. 17.
    Foster, B., Ryan, D.: An integer programming approach to the vehicle scheduling problem. Oper. Res. Q. 27, 367–384 (1976)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP completeness. Comput. Intractability (1979)Google Scholar
  20. 20.
    Geoffrion, A., Graves, G.: Mutlicommodity distribution system design by benders decomposition. Manage. Sci. 20(5), 822–844 (1974)zbMATHGoogle Scholar
  21. 21.
    Georgakopoulos, D., Jayaraman, P.P.: Internet of things: from internet scale sensing to smart services. Computing 98(10), 1041–1058 (2016)MathSciNetGoogle Scholar
  22. 22.
    Guastaroba, G., Speranza, M.: A heuristic for BILP problems: the single source capacitated facility location problem. Eur. J. Oper. Res. 238, 438–450 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hinojosa, Y., Puerto, J., Fernández, F.: A multiperiod two-echelon multicommodity capacitated plant location problem. Eur. J. Oper. Res. 123, 271–291 (2000)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Jacobsen, S.: Heuristics for the capacitated plant location model. Eur. J. Oper. Res. 12, 253–261 (1983)zbMATHGoogle Scholar
  25. 25.
    Klincewicz, J., Luss, H.: A lagrangian relaxation heuristic for capacitated facility location with single source constraints. J. Oper. Res. Soc. 37, 495–500 (1986)zbMATHGoogle Scholar
  26. 26.
    Klose, A., Görtz, S.: A branch-and-price algorithm for the capacitated facility location problem. Eur. J. Oper. Res. 179(3), 1109–1125 (2007)zbMATHGoogle Scholar
  27. 27.
    Krarup, J., Pruzan, P.: The simple plant location problem: survey and synthesis. Eur. J. Oper. Res. 12, 36–81 (1983)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kuehn, A., Hambuger, B.: A heuristic program for locating warehouses. Manage. Sci. 9, 643–666 (1963)Google Scholar
  29. 29.
    Li, J., Chu, F., Prins, C.: Lower and upper bounds for a capacitated plant location problem with multicommodity flow. Comput. Oper. Res. 36, 3019–3030 (2009)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Li, J., Chu, F., Prins, C., Zhu, Z.: Lower and upper bounds for a two-stage capacitated facility location problem with handling costs. Eur. J. Oper. Res. 236, 957–967 (2014)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Magnanti, T., Wong, R.: Decomposition methods for facility location problems. In: Mirchandani, P., Francis, R. (eds.) Discrete Location Theory, pp. 209–262. Wiley, New York (1990)Google Scholar
  32. 32.
    Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility location problems. SIAM J. Comput. 36(2), 411–432 (2003)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Melo, M., Nickel, S., Saldanha da Gama, F.: Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Comput. Oper. Res. 33, 181–208 (2005)zbMATHGoogle Scholar
  34. 34.
    Murray, A., Feng, X.: Public street lighting service standard assessment and achievement. Socio-Econ. Plan. Sci. 53, 14–22 (2016)Google Scholar
  35. 35.
    Murray, A.T., O’Kelly, M.E., Church, R.L.: Regional service coverage modelling. Comput. Oper. Res. 35(2), 339–355 (2008)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Peralta, A., Inga, E.: Hincapié: optimal scalability of fiwi networks based on multistage stochastic programming and policies. Opt. Soc. Am. 9(12), 1172–1183 (2017)Google Scholar
  37. 37.
    Pirkul, H.: Efficient algorithm for the capacitated concentrator location problem. Comput. Oper. Res. 14, 197–208 (1987)zbMATHGoogle Scholar
  38. 38.
    Pirkul, H., Jayaraman, V.: A multi-commodity, multi-plant, capacitated facility location problem: formulation and efficient heuristic solution. Manage. Sci. 25, 869–878 (1998)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Rathore, M.M., Ahmad, A., Paul, A., Rho, S.: Urban planning and buidling smart cities based on the internet of things using big data analytics. Comput. Netw. 101, 63–80 (2016)Google Scholar
  40. 40.
    Rathore, M.M., Paul, A., Ahmad, A., Chilamkurthi, N., Hong, W.-W., Seo, H.: Real-time secure communication for smart city in high-speed big data environment. Futur. Gener. Comput. Syst. 83, 638–652 (2017)Google Scholar
  41. 41.
    Rönnqvist, M., Tragantalerngsak, S., Holt, J.: A repeated matching heuristic for the single-source capacitated facility location problem. Eur. J. Oper. Res. 116, 51–68 (1999)zbMATHGoogle Scholar
  42. 42.
    Ryan, D., Falkner, J.: On integer properties of scheduling set partitioning models. Eur. J. Oper. Res. 35, 442–456 (1988)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Sarkar, S., Yen, H.H., Dixit, S., Mukherjee, B.: Hybrid wireless-optical broadband access network (WOBAN): network planning and setup. IEEE J. Sel. Areas Commun. 26(6), 12–21 (2008)Google Scholar
  44. 44.
    Schilling, D., Jayaraman, V., Barkhi, R.: A review of covering problems in facility location. Locat. Sci. 1(1), 25–55 (1993)zbMATHGoogle Scholar
  45. 45.
    Schreuder, J.: Application of a location model to fire stations in Rotterdam. Eur. J. Oper. Res. 6, 212–219 (1981)Google Scholar
  46. 46.
    Sridharan, R.: The capacitated plant location problem. Eur. J. Oper. Res. 87(2), 203–213 (1995)zbMATHGoogle Scholar
  47. 47.
    Toregas, C., Swain, R., Revelle, C., Bergman, L.: The location of emergency service facilities. Oper. Res. 19, 1363–1373 (1971)zbMATHGoogle Scholar
  48. 48.
    Verhoek, M.: Optimising the placement of access points for smart city services with stochastic demand. Master’s thesis (2017)Google Scholar
  49. 49.
    Vos, T., Phillipson, F.: Dense multi-service planning in smart cities. In: International Conference on Information Society and Smart Cities (2018)Google Scholar
  50. 50.
    Vos, T.: Using lamppost to provide urban areas with multiple services. Master’s thesis (2016)Google Scholar
  51. 51.
    Warszawski, A.: Multi-dimensional location problems. Oper. Res. Q. 24, 165–179 (1973)zbMATHGoogle Scholar
  52. 52.
    Warszawski, A., Peer, S.: Optimizing the location of facilities on a building site. Oper. Res. Q. 24, 35–44 (1973)Google Scholar
  53. 53.
    Wentges, P.: Accelerating Benders’ decomposition for the capacitated facility location problem. Math. Methods Oper. Res. 44(2), 267–290 (1996)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.TNOThe HagueThe Netherlands
  2. 2.University of GroningenGroningenThe Netherlands

Personalised recommendations