Advertisement

Solving Multiagent Constraint Optimization Problems on the Constraint Composite Graph

  • Ferdinando Fioretto
  • Hong Xu
  • Sven Koenig
  • T. K. Satish Kumar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11224)

Abstract

We introduce the Constraint Composite Graph (CCG) for Distributed Constraint Optimization Problems (DCOPs), a popular paradigm used for the description and resolution of cooperative multi-agent problems. The CCG is a novel graphical representation of DCOPs on which agents can coordinate their assignments to solve the distributed problem suboptimally. By leveraging this representation, agents are able to reduce the size of the problem. We propose a novel variant of Max-Sum—a popular DCOP incomplete algorithm—called CCG-Max-Sum, which is applied to CCGs, and demonstrate its efficiency and effectiveness on DCOP benchmarks based on several network topologies.

References

  1. 1.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chlebík, M., Chlebíková, J.: Crown reductions for the minimum weighted vertex cover problem. Discret. Appl. Math. 156(3), 292–312 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cohen, L., Zivan, R.: Max-sum revisited: the real power of damping. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10643, pp. 1505–1507. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71679-4_8CrossRefGoogle Scholar
  4. 4.
    De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor. Sci. Rep. 3, 2980 (2013)CrossRefGoogle Scholar
  5. 5.
    Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of low-power embedded devices using the Max-sum algorithm. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 639–646 (2008)Google Scholar
  6. 6.
    Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems and applications: a survey. J. Artif. Intell. Res. 61, 623–698 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fioretto, F., Yeoh, W., Pontelli, E.: Multi-variable agents decomposition for DCOPs. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 2480–2486 (2016)Google Scholar
  8. 8.
    Fioretto, F., Yeoh, W., Pontelli, E.: A multiagent system approach to scheduling devices in smart homes. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 981–989 (2017)Google Scholar
  9. 9.
    Fioretto, F., Yeoh, W., Pontelli, E., Ma, Y., Ranade, S.: A DCOP approach to the economic dispatch with demand response. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 981–989 (2017)Google Scholar
  10. 10.
    Hoang, K.D., Fioretto, F., Yeoh, W., Pontelli, E., Zivan, R.: A large neighboring search schema for multi-agent optimization. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 688–706. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98334-9_44CrossRefGoogle Scholar
  11. 11.
    Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 133–140 (2010)Google Scholar
  12. 12.
    Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kumar, T.K.S.: A framework for hybrid tractability results in Boolean weighted constraint satisfaction problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 282–297. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85958-1_19CrossRefGoogle Scholar
  14. 14.
    Kumar, T.K.S.: Lifting techniques for weighted constraint satisfaction problems. In: Proceedings of the International Symposium on Artificial Intelligence and Mathematics (ISAIM) (2008)Google Scholar
  15. 15.
    Kumar, T.K.S.: Kernelization, generation of bounds, and the scope of incremental computation for weighted constraint satisfaction problems. In: Proceedings of the International Symposium on Artificial Intelligence and Mathematics (ISAIM) (2016)Google Scholar
  16. 16.
    Maheswaran, R., Pearce, J., Tambe, M.: Distributed algorithms for DCOP: a graphical game-based approach. In: Proceedings of the Conference on Parallel and Distributed Computing Systems (PDCS), pp. 432–439 (2004)Google Scholar
  17. 17.
    Modi, P., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pearce, J., Tambe, M.: Quality guarantees on k-optimal solutions for distributed constraint optimization problems. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1446–1451 (2007)Google Scholar
  20. 20.
    Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1413–1420 (2005)Google Scholar
  21. 21.
    Petcu, A., Faltings, B., Mailler, R.: PC-DPOP: a new partial centralization algorithm for distributed optimization. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 167–172 (2007)Google Scholar
  22. 22.
    Rust, P., Picard, G., Ramparany, F.: Using message-passing DCOP algorithms to solve energy-efficient smart environment configuration problems. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 468–474 (2016)Google Scholar
  23. 23.
    Silva, G., Reis, L., Terceiro, A., Meirelles, P., Kon, F.: Implementing federated social networking: report from the trenches. In: Proceedings of the International Symposium on Open Collaboration (OpenSym), pp. 8:1–8:10 (2017)Google Scholar
  24. 24.
    Vinyals, M., Rodríguez-Aguilar, J., Cerquides, J.: Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law. J. Auton. Agents Multi-Agent Syst. 22(3), 439–464 (2011)CrossRefGoogle Scholar
  25. 25.
    Xu, H., Satish Kumar, T.K., Koenig, S.: The Nemhauser-Trotter reduction and lifted message passing for the weighted CSP. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 387–402. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59776-8_31CrossRefGoogle Scholar
  26. 26.
    Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm. J. Artif. Intell. Res. 38, 85–133 (2010)CrossRefGoogle Scholar
  27. 27.
    Zhang, W., Wang, G., Xing, Z., Wittenberg, L.: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. Artif. Intell. 161(1–2), 55–87 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed constraint optimization. Artif. Intell. 212, 1–26 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zivan, R., Parash, T., Naveh, Y.: Applying max-sum to asymmetric distributed constraint optimization. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 432–439 (2015)Google Scholar
  30. 30.
    Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.: Distributed constraint optimization for teams of mobile sensing agents. J. Auton. Agents Multi-Agent Syst. 29(3), 495–536 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations