Advertisement

An Environment for Combinatorial Experiments in a Multi-agent Simulation for Disaster Response

  • Shunki TakamiEmail author
  • Masaki Onishi
  • Kazunori Iwata
  • Nobuhiro Ito
  • Yohsuke Murase
  • Takeshi Uchitane
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11224)

Abstract

We present a research environment for combinatorial experiments for the RoboCupRescue Simulation, which is a platform for the study of disaster-relief strategies using multi-agent simulations. To simulate the agents in disaster-relief situations in the RoboCupRescue Simulation, it is necessary to implement a wide variety of algorithms for tasks such as such as group formation, path planning, and task allocation. Recently, we proposed a modular framework, the Agent Development Framework, that enables researchers to implement, study, and test each algorithm independently. Because the algorithms developed in this framework are mutually replaceable, it is possible to combine algorithms developed by different researchers. In this study, we further propose an experimental environment to efficiently handle the experiments of a huge number of possible combinations of the algorithms. As a demonstration, we test various combinations of the algorithms developed by the participants of RoboCup 2017 and show that there indeed exists a set of the algorithms that is superior to the original ones developed by each team.

Keywords

Experimental environment Combinatorial experiment Multi-agent system RoboCupRescue Simulation 

Notes

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP16K00310 and JP17K00317. This work was partially supported by MEXT Post-K project “Studies of multi-level spatiotemporal simulation of socioeconomic phenomena”. We thank Kimberly Moravec, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

References

  1. 1.
    Akın, H.L., Aşık, O.: RoboCup 2017 rescue simulation league team description RoboAKUT (Turkey) (2017). https://www.robocup2017.org/file/symposium/rescue_sim3/RCRS_2017_paper_13.pdf
  2. 2.
    Ardestani, P., Taherian, M., MohammadAliZadeh, P., Nikoo, E.J.: RoboCup rescue 2017- agent simulation League team description paper MRL (Iran) (2017). https://www.robocup2017.org/file/symposium/rescue_sim3/RCRS_2017_paper_7.pdf
  3. 3.
    Butterfield, A., Ngondi, G.E., Kerr, A.: Combinatorial explosion. In: A Dictionary of Computer Science. Oxford University Press (2016)Google Scholar
  4. 4.
    Committee, R.S.L.: RoboCuprescue simulation. http://rescuesim.robocup.org/
  5. 5.
    Faraji, F., Nardin, L.G., Modaresi, A., Helal, D., Iwata, K., Ito, N.: RoboCup rescue simulation league agent 2017 competition rules and setup. http://roborescue.sourceforge.net/web/2017/downloads/rules2017.pdf
  6. 6.
    Ghahramanpour, M., Absalan, A., Kandeh, A.: RoboCup 2017 rescue simulation league team description aura (Iran) (2017). https://www.robocup2017.org/file/symposium/rescue_sim3/RCRS_2017_paper_1.pdf
  7. 7.
    Kitano, H., Tadokoro, S.: RoboCup rescue: a grand challenge for multiagent and intelligent systems. AI Mag. 22(1), 39 (2001)Google Scholar
  8. 8.
    Murase, Y., Uchitane, T., Ito, N.: A tool for parameter-space explorations. Physics Procedia 57, 73–76 (2014).  https://doi.org/10.1016/j.phpro.2014.08.134. Proceedings of the 27th Workshop on Computer Simulation Studies in Condensed Matter Physics (CSP2014)CrossRefGoogle Scholar
  9. 9.
    Skinner, C., Ramchurn, S.: The robocup rescue simulation platform. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: Volume 1 - Volume 1, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp. 1647–1648. AAMAS 2010 (2010). http://dl.acm.org/citation.cfm?id=1838206.1838523
  10. 10.
    Takahashi, T., Takeuchi, I., Koto, T., Tadokoro, S., Noda, I.: RoboCup-Rescue disaster simulator architecture. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 379–384. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45324-5_42. http://dl.acm.org/citation.cfm?id=646585.698826CrossRefzbMATHGoogle Scholar
  11. 11.
    Takami, S., Takayanagi, K., Jaishy, S., Ito, N., Iwata, K.: Agent-development framework based on modular structure to research disaster-relief activities. Int. J. Softw. Innov. (IJSI) 6(4), 1–15 (2018). https://doi.org/10.4018/IJSI.2018100101. ID 210451CrossRefGoogle Scholar
  12. 12.
    Tejada-Begazo, M., Rodríguez-Siu, K., Bernedo-Flores, L.: RoboCup 2017 rescue simulation league team description larvicsaurus (Perú) (2017). https://www.robocup2017.org/file/symposium/rescue_sim3/RCRS_2017_paper_5.pdf
  13. 13.
    Visser, A., Ito, N., Kleiner, A.: RoboCup rescue simulation innovation strategy. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 661–672. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18615-3_54CrossRefGoogle Scholar
  14. 14.
    Zhang, P., Kang, T., Jiang, F., Peng, J., Zhang, X.: RoboCup 2017 rescue simulation league team description CSU\_yunlu (China) (2017). https://www.robocup2017.org/file/symposium/rescue_sim3/RCRS_2017_paper_4.pdf

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Graduate School of Systems and Information EngineeringUniversity of TsukubaTsukubaJapan
  2. 2.Artificial Intelligence Research CenterNational Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
  3. 3.Department of Business AdministrationAichi UniversityNagoyaJapan
  4. 4.Department of Information ScienceAichi Institute of TechnologyToyotaJapan
  5. 5.RIKEN Advanced Institute for Computational ScienceKobeJapan
  6. 6.Research Institute for Economics and Business AdministrationKobe UniversityKobeJapan

Personalised recommendations