MicroRNAs (miRs) in Muscle Gene Therapy

  • Alessio Rotini
  • Giorgia Giacomazzi
  • Ester Sara Di Filippo
  • Maurilio SampaolesiEmail author


Despite recent advances in scientific knowledge and several clinical trials, muscle gene and cell therapies remain a major challenge. As a matter of fact, novel technologies are being developed for targeting muscle tissues including CRISPR, TALEN, and iPS technologies indicating that gene-based therapies still hold significant promises. Recent findings from our laboratory and others unveiled that microRNAs (miRs), small nonprotein-coding RNAs, are able to posttranscriptionally regulate many genes and exert pleiotropic effects in the muscle. Deleterious changes in miR expression play an important role in muscle diseases. In this regard, miRs are possible therapeutic targets, and miR-based gene therapy for smooth, skeletal, and cardiac muscles is an extremely interesting field for harnessing the complexity of miR-based therapeutic approaches. In this chapter, we will focus on miR-driven regulation of myogenic routes in homeostatic and challenging states. We will also survey the intriguing perspective of miR biological transfers, including the delivery of functional miRs via exosomes that unlike other vectors are cell-free natural systems for ferrying RNAs between cells. Finally, we will review the recent literature on key miR targets to treat skeletal, cardiac, and smooth muscle diseases and novel valuable clinical tools for more effective treatment strategies in muscle degeneration.


Cardiomyopathies Muscular dystrophies MiR-based therapies MiRs Smooth muscle cells Exosome 


  1. 1.
    Heinrich EM, Dimmeler S (2012) MicroRNAs and stem cells: control of pluripotency, reprogramming, and lineage commitment. Circ Res 110(7):1014–1022. CrossRefPubMedGoogle Scholar
  2. 2.
    Sharma M, Juvvuna PK, Kukreti H, McFarlane C (2014) Mega roles of microRNAs in regulation of skeletal muscle health and disease. Front Physiol 5:239. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Berardi E, Pues M, Thorrez L, Sampaolesi M (2012) miRNAs in ESC differentiation. Am J Phys Heart Circ Phys 303(8):H931–H939. CrossRefGoogle Scholar
  4. 4.
    Quattrocelli M, Sampaolesi M (2015) The mesmiRizing complexity of microRNAs for striated muscle tissue engineering. Adv Drug Deliv Rev 88:37–52. CrossRefPubMedGoogle Scholar
  5. 5.
    Michell DL, Vickers KC (2016) HDL and microRNA therapeutics in cardiovascular disease. Pharmacol Ther 168:43–52. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. CrossRefGoogle Scholar
  7. 7.
    Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, Xiao T, Schafer J, Lee ML, Schmittgen TD, Nana-Sinkam SP, Jarjoura D, Marsh CB (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3(11):e3694. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yang N (2015) An overview of viral and nonviral delivery systems for microRNA. Int J Pharm Investig 5(4):179–181. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nayerossadat N, Maedeh T, Ali PA (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ye D, Wang G, Liu Y, Huang W, Wu M, Zhu S, Jia W, Deng AM, Liu H, Kang J (2012) MiR-138 promotes induced pluripotent stem cell generation through the regulation of the p53 signaling. Stem Cells 30(8):1645–1654. CrossRefPubMedGoogle Scholar
  11. 11.
    Lee SK, Teng Y, Wong HK, Ng TK, Huang L, Lei P, Choy KW, Liu Y, Zhang M, Lam DS, Yam GH, Pang CP (2011) MicroRNA-145 regulates human corneal epithelial differentiation. PLoS One 6(6):e21249. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schultz BR, Chamberlain JS (2008) Recombinant adeno-associated virus transduction and integration. Mol Ther 16(7):1189–1199. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492(7429):376–381CrossRefGoogle Scholar
  14. 14.
    Yang N (2012) Nonviral gene delivery system. Int J Pharm Investig 2(3):97–98. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mathiyalagan P, Sahoo S (2017) Exosomes-based gene therapy for MicroRNA delivery. Methods Mol Biol 1521:139–152. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Peng B, Chen Y, Leong KW (2015) MicroRNA delivery for regenerative medicine. Adv Drug Deliv Rev 88:108–122. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12(5):329–340. CrossRefPubMedGoogle Scholar
  18. 18.
    Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233. CrossRefPubMedGoogle Scholar
  19. 19.
    McCarthy JJ (2008) MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta 1779(11):682–691. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dey BK, Gagan J, Dutta A (2011) miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol 31(1):203–214. CrossRefPubMedGoogle Scholar
  21. 21.
    Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283(15):9836–9843. CrossRefPubMedGoogle Scholar
  22. 22.
    Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M (2009) Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci U S A 106(32):13383–13387. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Feng Y, Cao JH, Li XY, Zhao SH (2011) Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts. Cell Biochem Funct 29(5):378–383. CrossRefPubMedGoogle Scholar
  24. 24.
    Liu J, Luo XJ, Xiong AW, Zhang ZD, Yue S, Zhu MS, Cheng SY (2010) MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras. J Biol Chem 285(34):26599–26607. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8(3):278–284. CrossRefPubMedGoogle Scholar
  26. 26.
    Liu N, Williams AH, Maxeiner JM, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2012) microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest 122(6):2054–2065. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Alexander MS, Casar JC, Motohashi N, Vieira NM, Eisenberg I, Marshall JL, Gasperini MJ, Lek A, Myers JA, Estrella EA, Kang PB, Shapiro F, Rahimov F, Kawahara G, Widrick JJ, Kunkel LM (2014) MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms. J Clin Invest 124(6):2651–2667. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ardite E, Perdiguero E, Vidal B, Gutarra S, Serrano AL, Munoz-Canoves P (2012) PAI-1-regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy. J Cell Biol 196(1):163–175. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Crist CG, Montarras D, Buckingham M (2012) Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11(1):118–126. CrossRefPubMedGoogle Scholar
  31. 31.
    McFarlane C, Vajjala A, Arigela H, Lokireddy S, Ge X, Bonala S, Manickam R, Kambadur R, Sharma M (2014) Negative auto-regulation of myostatin expression is mediated by Smad3 and microRNA-27. PLoS One 9(1):e87687. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tan SB, Li J, Chen X, Zhang W, Zhang D, Zhang C, Li D, Zhang Y (2014) Small molecule inhibitor of myogenic microRNAs leads to a discovery of miR-221/222-myoD-myomiRs regulatory pathway. Chem Biol 21(10):1265–1270. CrossRefPubMedGoogle Scholar
  33. 33.
    McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408(6808):106–111. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lu J, McKinsey TA, Zhang CL, Olson EN (2000) Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6(2):233–244CrossRefGoogle Scholar
  35. 35.
    Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang DZ (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190(5):867–879. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Anderson C, Catoe H, Werner R (2006) MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 34(20):5863–5871. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Feng Y, Niu LL, Wei W, Zhang WY, Li XY, Cao JH, Zhao SH (2013) A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis 4:e934. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Saccone V, Consalvi S, Giordani L, Mozzetta C, Barozzi I, Sandona M, Ryan T, Rojas-Munoz A, Madaro L, Fasanaro P, Borsellino G, De Bardi M, Frige G, Termanini A, Sun X, Rossant J, Bruneau BG, Mercola M, Minucci S, Puri PL (2014) HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 28(8):841–857. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Giordani L, Sandona M, Rotini A, Puri PL, Consalvi S, Saccone V (2014) Muscle-specific microRNAs as biomarkers of Duchenne muscular dystrophy progression and response to therapies. Rare Dis 2(1):e974969. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Basu U, Lozynska O, Moorwood C, Patel G, Wilton SD, Khurana TS (2011) Translational regulation of utrophin by miRNAs. PLoS One 6(12):e29376. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Moorwood C, Soni N, Patel G, Wilton SD, Khurana TS (2013) A cell-based high-throughput screening assay for posttranscriptional utrophin upregulation. J Biomol Screen 18(4):400–406. CrossRefPubMedGoogle Scholar
  42. 42.
    Amirouche A, Tadesse H, Miura P, Belanger G, Lunde JA, Cote J, Jasmin BJ (2014) Converging pathways involving microRNA-206 and the RNA-binding protein KSRP control post-transcriptionally utrophin A expression in skeletal muscle. Nucleic Acids Res 42(6):3982–3997. CrossRefPubMedGoogle Scholar
  43. 43.
    McCarthy JJ, Esser KA, Andrade FH (2007) MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol 293(1):C451–C457. CrossRefPubMedGoogle Scholar
  44. 44.
    Nakasa T, Ishikawa M, Shi M, Shibuya H, Adachi N, Ochi M (2010) Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J Cell Mol Med 14(10):2495–2505. CrossRefPubMedGoogle Scholar
  45. 45.
    Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM, Guttridge DC (2008) NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14(5):369–381. CrossRefPubMedGoogle Scholar
  46. 46.
    Zhou L, Wang L, Lu L, Jiang P, Sun H, Wang H (2012) A novel target of microRNA-29, Ring1 and YY1-binding protein (Rybp), negatively regulates skeletal myogenesis. J Biol Chem 287(30):25255–25265. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Salmons S, Vrbova G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol 201(3):535–549CrossRefGoogle Scholar
  48. 48.
    Webster C, Silberstein L, Hays AP, Blau HM (1988) Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 52(4):503–513CrossRefGoogle Scholar
  49. 49.
    Selsby JT, Morine KJ, Pendrak K, Barton ER, Sweeney HL (2012) Rescue of dystrophic skeletal muscle by PGC-1alpha involves a fast to slow fiber type shift in the mdx mouse. PLoS One 7(1):e30063. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    von Maltzahn J, Renaud JM, Parise G, Rudnicki MA (2012) Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci U S A 109(50):20614–20619. CrossRefGoogle Scholar
  51. 51.
    Stupka N, Plant DR, Schertzer JD, Emerson TM, Bassel-Duby R, Olson EN, Lynch GS (2006) Activated calcineurin ameliorates contraction-induced injury to skeletal muscles of mdx dystrophic mice. J Physiol 575(Pt 2):645–656. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17(5):662–673. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhang CL, McKinsey TA, Olson EN (2002) Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 22(20):7302–7312CrossRefGoogle Scholar
  54. 54.
    Klingler W, Jurkat-Rott K, Lehmann-Horn F, Schleip R (2012) The role of fibrosis. Acta Myol 31(3):184–195PubMedPubMedCentralGoogle Scholar
  55. 55.
    Cacchiarelli D, Martone J, Girardi E, Cesana M, Incitti T, Morlando M, Nicoletti C, Santini T, Sthandier O, Barberi L, Auricchio A, Musaro A, Bozzoni I (2010) MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway. Cell Metab 12(4):341–351. CrossRefPubMedGoogle Scholar
  56. 56.
    Nguyen-Tran DH, Hait NC, Sperber H, Qi J, Fischer K, Ieronimakis N, Pantoja M, Hays A, Allegood J, Reyes M, Spiegel S, Ruohola-Baker H (2014) Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech 7(1):41–54. CrossRefPubMedGoogle Scholar
  57. 57.
    Wang L, Zhou L, Jiang P, Lu L, Chen X, Lan H, Guttridge DC, Sun H, Wang H (2012) Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Mol Ther 20(6):1222–1233. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Meadows E, Kota J, Malik V, Clark R, Sahenk Z, Harper S, Mendell J (2014) MicroRNA-29 overexpression delivered by adeno-associated virus suppresses fibrosis in mdx: utrn+/-mice (S61. 003). Neurology 82(10 Supplement):S61-003Google Scholar
  59. 59.
    Cacchiarelli D, Incitti T, Martone J, Cesana M, Cazzella V, Santini T, Sthandier O, Bozzoni I (2011) miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep 12(2):136–141. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Rodriguez MC, Tarnopolsky MA (2003) Patients with dystrophinopathy show evidence of increased oxidative stress. Free Radic Biol Med 34(9):1217–1220CrossRefGoogle Scholar
  61. 61.
    Ragusa RJ, Chow CK, Porter JD (1997) Oxidative stress as a potential pathogenic mechanism in an animal model of Duchenne muscular dystrophy. Neuromuscul Disord 7(6-7):379–386CrossRefGoogle Scholar
  62. 62.
    Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J (2015) The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil 36:377–393. CrossRefPubMedGoogle Scholar
  63. 63.
    Lawler JM (2011) Exacerbation of pathology by oxidative stress in respiratory and locomotor muscles with Duchenne muscular dystrophy. J Physiol 589(Pt 9):2161–2170. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Church JE, Trieu J, Chee A, Naim T, Gehrig SM, Lamon S, Angelini C, Russell AP, Lynch GS (2014) Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy. Exp Physiol 99(4):675–687. CrossRefPubMedGoogle Scholar
  65. 65.
    Rando TA, Disatnik MH, Yu Y, Franco A (1998) Muscle cells from mdx mice have an increased susceptibility to oxidative stress. Neuromuscul Disord 8(1):14–21CrossRefGoogle Scholar
  66. 66.
    Matsumura CY, Menezes de Oliveira B, Durbeej M, Marques MJ (2013) Isobaric tagging-based quantification for proteomic analysis: a comparative study of spared and affected muscles from mdx mice at the early phase of dystrophy. PLoS One 8(6):e65831. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Li X, Li Y, Zhao L, Zhang D, Yao X, Zhang H, Wang YC, Wang XY, Xia H, Yan J, Ying H (2014) Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients. Mol Ther Nucleic Acids 3:e177. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, Flanigan KM, Neely LA, Whitney D, Beggs AH, Kohane IS, Kunkel LM (2007) Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A 104(43):17016–17021. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Seok HY, Tatsuguchi M, Callis TE, He A, Pu WT, Wang DZ (2011) miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation. J Biol Chem 286(41):35339–35346. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cruz-Guzmán Odel R, Rodríguez-Cruz M, Escobar Cedillo RE (2015) Systemic inflammation in Duchenne muscular dystrophy: association with muscle function and nutritional status. Biomed Res Int 2015:7. CrossRefGoogle Scholar
  71. 71.
    Nie M, Liu J, Yang Q, Seok HY, Hu X, Deng ZL, Wang DZ (2016) MicroRNA-155 facilitates skeletal muscle regeneration by balancing pro- and anti-inflammatory macrophages. Cell Death Dis 7(6):e2261. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ennen JP, Verma M, Asakura A (2013) Vascular-targeted therapies for Duchenne muscular dystrophy. Skelet Muscle 3(1):9. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wang S, Olson EN (2009) AngiomiRs—key regulators of angiogenesis. Curr Opin Genet Dev 19(3):205–211. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214–220CrossRefGoogle Scholar
  75. 75.
    Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ivey KN, Muth A, Arnold J, King FW, Yeh R-F, Fish JE, Hsiao EC, Schwartz RJ, Conklin BR, Bernstein HS (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2(3):219–229. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci 103(48):18255–18260CrossRefGoogle Scholar
  78. 78.
    Callis TE, Pandya K, Seok HY, Tang R-H, Tatsuguchi M, Huang Z-P, Chen J-F, Deng Z, Gunn B, Shumate J (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119(9):2772–2786CrossRefGoogle Scholar
  79. 79.
    Hydbring P, Badalian-Very G (2013) Clinical applications of microRNAs. F1000Research 2:136. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Chiavacci E, Dolfi L, Verduci L, Meghini F, Gestri G, Evangelista AMM, Wilson SW, Cremisi F, Pitto L (2012) MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development. PLoS One 7(11):e50536CrossRefGoogle Scholar
  81. 81.
    Miyasaka KY, Kida YS, Banjo T, Ueki Y, Nagayama K, Matsumoto T, Sato M, Ogura T (2011) Heartbeat regulates cardiogenesis by suppressing retinoic acid signaling via expression of miR-143. Mech Dev 128(1):18–28CrossRefGoogle Scholar
  82. 82.
    Katz MG, Fargnoli AS, Kendle AP, Hajjar RJ, Bridges CR (2016) The role of microRNAs in cardiac development and regenerative capacity. Am J Phys Heart Circ Phys 310(5):H528–H541Google Scholar
  83. 83.
    Ogórek B, Hosoda T, Rondon C, Gurusamy N, Gatti A, Bardelli S, Quaini F, Bussani R, Silvestri F, Cesselli D (2010) Myocyte turnover in the aging human heart. Circulation 122(Suppl 21):A17367–A17367Google Scholar
  84. 84.
    Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2003) Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 92(2):139–150CrossRefGoogle Scholar
  85. 85.
    Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28(8):1737–1746CrossRefGoogle Scholar
  86. 86.
    Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam Y-J, Matkovich SJ, Dorn GW, Van Rooij E, Olson EN (2011) miR-15 family regulates postnatal mitotic arrest of cardiomyocytes novelty and significance. Circ Res 109(6):670–679CrossRefGoogle Scholar
  87. 87.
    Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, Kaluza D, Tréguer K, Carmona G, Bonauer A (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495(7439):107–110CrossRefGoogle Scholar
  88. 88.
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080CrossRefGoogle Scholar
  89. 89.
    Duelen R, Sampaolesi M (2017) Stem cell technology in cardiac regeneration: a pluripotent stem cell promise. EBioMedicine 16:30–40. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E (2011) Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124(14):1537–1547. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Han Y-C, Park CY, Bhagat G, Zhang J, Wang Y, Fan J-B, Liu M, Zou Y, Weissman IL, Gu H (2010) microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 207:475CrossRefGoogle Scholar
  92. 92.
    Wei W, He H, Zhang W, Zhang H, Bai J, Liu H, Cao J, Chang K, Li X, Zhao S (2013) miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis 4(6):e668CrossRefGoogle Scholar
  93. 93.
    da Costa Martins PA, Salic K, Gladka MM, Armand A-S, Leptidis S, El Azzouzi H, Hansen A, Coenen-de Roo CJ, Bierhuizen MF, Van Der Nagel R (2010) MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol 12(12):1220–1227CrossRefGoogle Scholar
  94. 94.
    Bernardo BC, Nguyen SS, Winbanks CE, Gao X-M, Boey EJ, Tham YK, Kiriazis H, Ooi JY, Porrello ER, Igoor S (2014) Therapeutic silencing of miR-652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy. FASEB J 28(12):5097–5110CrossRefGoogle Scholar
  95. 95.
    Huang J, Sun W, Huang H, Ye J, Pan W, Zhong Y, Cheng C, You X, Liu B, Xiong L (2014) miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. PLoS One 9(4):e94382CrossRefGoogle Scholar
  96. 96.
    Higashi K, Yamada Y, Minatoguchi S, Baba S, Iwasa M, Kanamori H, Kawasaki M, Nishigaki K, Takemura G, Kumazaki M (2015) MicroRNA-145 repairs infarcted myocardium by accelerating cardiomyocyte autophagy. Am J Phys Heart Circ Phys 309(11):H1813–H1826Google Scholar
  97. 97.
    Su M, Wang J, Wang C, Wang X, Dong W, Qiu W, Wang Y, Zhao X, Zou Y, Song L (2015) MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ 22(6):986–999CrossRefGoogle Scholar
  98. 98.
    Gupta SK, Foinquinos A, Thum S, Remke J, Zimmer K, Bauters C, de Groote P, Boon RA, de Windt LJ, Preissl S (2016) Preclinical development of a microRNA-based therapy for elderly patients with myocardial infarction. J Am Coll Cardiol 68(14):1557–1571CrossRefGoogle Scholar
  99. 99.
    Chen J, Huang Z-P, Seok H, Ding J, Kataoka M, Zhang Z, Hu X, Wang G, Lin Z, Wang S (2013) mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 112(12):1557CrossRefGoogle Scholar
  100. 100.
    Shen Y, Shen Z, Miao L, Xin X, Lin S, Zhu Y, Guo W, Zhu YZ (2015) miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-γ-lyase expression. Antioxid Redox Signal 22(3):224–240CrossRefGoogle Scholar
  101. 101.
    Crippa S, Cassano M, Messina G, Galli D, Galvez BG, Curk T, Altomare C, Ronzoni F, Toelen J, Gijsbers R (2011) miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. J Cell Biol 193(7):1197–1212. CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Quattrocelli M, Crippa S, Montecchiani C, Camps J, Cornaglia AI, Boldrin L, Morgan J, Calligaro A, Casasco A, Orlacchio A (2013) Long-term miR-669a therapy alleviates chronic dilated cardiomyopathy in dystrophic mice. J Am Heart Assoc 2(4):e000284CrossRefGoogle Scholar
  103. 103.
    Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein L (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22(10):1282–1289CrossRefGoogle Scholar
  104. 104.
    Schwach V, Passier R (2016) Generation and purification of human stem cell-derived cardiomyocytes. Differentiation 91(4):126–138CrossRefGoogle Scholar
  105. 105.
    Chong JJ, Yang X, Don CW, Minami E, Liu Y-W, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277. CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Quattrocelli M, Swinnen M, Giacomazzi G, Camps J, Barthélemy I, Ceccarelli G, Caluwé E, Grosemans H, Thorrez L, Pelizzo G, Muijtjens M, Verfaillie CM, Blot S, Janssens S, Sampaolesi M (2015) Mesodermal iPSC-derived progenitor cells functionally regenerate cardiac and skeletal muscle. J Clin Invest 125(12):4463–4482. CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Mauritz C, Martens A, Rojas SV, Schnick T, Rathert C, Schecker N, Menke S, Glage S, Zweigerdt R, Haverich A (2011) Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur Heart J 32:2634CrossRefGoogle Scholar
  108. 108.
    Izarra A, Moscoso I, Levent E, Cañón S, Cerrada I, Díez-Juan A, Blanca V, Núñez-Gil I-J, Valiente I, Ruíz-Sauri A (2014) miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Reports 3(6):1029–1042CrossRefGoogle Scholar
  109. 109.
    Jayawardena TM, Finch EA, Zhang L, Zhang H, Hodgkinson C, Pratt RE, Rosenberg PB, Mirotsou M, Dzau VJ (2014) MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circ Res 116:418CrossRefGoogle Scholar
  110. 110.
    Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110(11):1465–1473CrossRefGoogle Scholar
  111. 111.
    Judson RL, Babiarz J, Venere M, Blelloch R (2009) Embryonic stem cell specific microRNAs promote induced pluripotency. Nat Biotechnol 27(5):459CrossRefGoogle Scholar
  112. 112.
    Mathew OP, Ranganna K, Yatsu FM (2010) Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells. Biomed Pharmacother 64(10):733–740. CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Choe N, Kwon J-S, Kim J-R, Eom GH, Kim Y, Nam K-I, Ahn Y, Kee HJ, Kook H (2013) The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis 229(2):348–355CrossRefGoogle Scholar
  114. 114.
    Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J (2009) The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ 16(12):1590–1598CrossRefGoogle Scholar
  115. 115.
    Cheng Y, Liu X, Yang J, Lin Y, Xu D-Z, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C (2009) MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 105(2):158–166CrossRefGoogle Scholar
  116. 116.
    Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C (2009) A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 104(4):476–487. CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100(11):1579–1588. CrossRefPubMedGoogle Scholar
  118. 118.
    McDonald RA, White KM, Wu J, Cooley BC, Robertson KE, Halliday CA, McClure JD, Francis S, Lu R, Kennedy S, George SJ, Wan S, van Rooij E, Baker AH (2013) miRNA-21 is dysregulated in response to vein grafting in multiple models and genetic ablation in mice attenuates neointima formation. Eur Heart J 34(22):1636–1643. CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD, Bochicchio A, Vicinanza C, Aquila I, Curcio A (2011) MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo novelty and significance. Circ Res 109(8):880–893CrossRefGoogle Scholar
  120. 120.
    Huang K, Bao H, Yan Z-Q, Wang L, Zhang P, Yao Q-P, Shi Q, Chen X-H, Wang K-X, Shen B-R (2017) MicroRNA-33 protects against neointimal hyperplasia induced by arterial mechanical stretch in the grafted vein. Cardiovasc Res 113(5):488–497. CrossRefPubMedGoogle Scholar
  121. 121.
    Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM (2011) MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 226(4):1035–1043. CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X, Khatsenko OG, Kaimal V, Lees CJ, Fernandez-Hernando C, Fisher EA, Temel RE, Moore KJ (2011) Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478(7369):404–407. CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Zhang J, Zhao F, Yu X, Lu X, Zheng G (2015) MicroRNA-155 modulates the proliferation of vascular smooth muscle cells by targeting endothelial nitric oxide synthase. Int J Mol Med 35(6):1708–1714. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alessio Rotini
    • 1
    • 2
    • 3
  • Giorgia Giacomazzi
    • 1
    • 2
  • Ester Sara Di Filippo
    • 1
    • 2
    • 3
  • Maurilio Sampaolesi
    • 1
    • 2
    • 4
    Email author
  1. 1.Translational Cardiomyology, Stem Cell Research Institute, Stem Cell Biology and Embryology Unit, Department of Development and RegenerationKU LeuvenLeuvenBelgium
  2. 2.Interuniversity Institute of MyologyChietiItaly
  3. 3.Department of Neuroscience, Imaging and Clinical SciencesUniversity “G. d’Annunzio” Chieti-PescaraChietiItaly
  4. 4.Human Anatomy Unit, Department of Public Health, Experimental and Forensic MedicineUniversity of PaviaPaviaItaly

Personalised recommendations