Dystroglycanopathy Gene Therapy: Unlocking the Potential of Genetic Engineering

  • Charles H. Vannoy
  • Anthony Blaeser
  • Qi L. LuEmail author


Muscular dystrophy-dystroglycanopathies (MDDGs) are neuromuscular disorders associated with aberrant O-glycosylation of α-dystroglycan—an extracellular peripheral membrane glycoprotein central to the dystrophin-glycoprotein complex. The majority of these disorders are caused by loss-of-function mutations in a multitude of genes that disrupt the posttranslational modification of α-dystroglycan, affecting its ability to function as a receptor for extracellular matrix proteins containing laminin globular domains. As a result, clinical manifestations of MDDGs are highly variable, exhibiting a wide spectrum of clinical phenotypes including mild to severe defects in the development of the muscles, brain, and/or eyes. Over the last couple of decades, significant progress has been made in the elucidation of O-mannosyl glycan structures on α-dystroglycan and characterization of the underlying mechanisms of MDDGs, which has prompted concerted efforts toward the development and evaluation of potential clinical treatment options. Current genetic engineering efforts designed to treat MDDGs employ adeno-associated virus (AAV)-mediated delivery of expression vectors for gene replacement/supplementation and antisense oligonucleotide (AON) splice-modulation therapy to suppress exon trapping. Future therapeutic strategies are focused on the optimization of these current technologies and exploration of newer technologies such as genome editing. In this chapter, we address the disruption of functional α-dystroglycan as it relates to various clinical manifestations and highlight the potential genetic engineering strategies for treating MDDGs with an emphasis on preclinical data. We also discuss the problems that must be solved before effective treatment options are readily available.


Dystroglycan Dystroglycanopathy Gene therapy Glycosylation Muscular dystrophy Therapeutic strategies 



This work was supported by the Carolinas Muscular Dystrophy Research Endowment at the Atrium Health Foundation and Carolinas Medical Center, Charlotte, NC.


  1. 1.
    Henry MD, Campbell KP (1999) Dystroglycan inside and out. Curr Opin Cell Biol 11(5):602–607PubMedCrossRefGoogle Scholar
  2. 2.
    Moore SA, Saito F, Chen J, Michele DE, Henry MD, Messing A, Cohn RD, Ross-Barta SE, Westra S, Williamson RA, Hoshi T, Campbell KP (2002) Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418(6896):422–425PubMedCrossRefGoogle Scholar
  3. 3.
    Schröder JE, Tegeler MR, Groβhans U, Porten E, Blank M, Lee J, Esapa C, Blake DJ, Kröger S (2007) Dystroglycan regulates structure, proliferation and differentiation of neuroepithelial cells in the developing vertebrate CNS. Dev Biol 307(1):62–78PubMedCrossRefGoogle Scholar
  4. 4.
    Ibraghimov-Beskrovnaya O, Milatovich A, Ozcelik T, Yang B, Koepnick K, Francke U, Campbell KP (1993) Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Hum Mol Genet 2(10):1651–1657PubMedCrossRefGoogle Scholar
  5. 5.
    Ervasti JM, Campbell KP (1991) Membrane organization of the dystrophin-glycoprotein complex. Cell 66(6):1121–1131PubMedCrossRefGoogle Scholar
  6. 6.
    Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP (1992) Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355(6362):696–702PubMedCrossRefGoogle Scholar
  7. 7.
    Bowe MA, Deyst KA, Leszyk JD, Fallon JR (1994) Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: a heteromeric complex related to the dystroglycans. Neuron 12(5):1173–1180PubMedCrossRefGoogle Scholar
  8. 8.
    Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119(2):199–207PubMedCrossRefGoogle Scholar
  9. 9.
    Campbell KP, Kahl SD (1989) Association of dystrophin and an integral membrane glycoprotein. Nature 338(6212):259–262PubMedCrossRefGoogle Scholar
  10. 10.
    Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S, Madson M, Oldstone MBA, Schachter H, Wells L, Campbell KP (2010) O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327(5961):88–92PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yurchenco PD (2011) Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 3(2):a004911PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Briggs DC, Yoshida-Moriguchi T, Zheng T, Venzke D, Anderson ME, Strazzulli A, Moracci M, Yu L, Hohenester E, Campbell KP (2016) Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nat Chem Biol 12(10):810–814PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chiba A, Matsumura K, Yamada H, Inazu T, Shimizu T, Kusunoki S, Kanazawa I, Kobata A, Endo T (1997) Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve α-dystroglycan. J Biol Chem 272(4):2156–2162PubMedCrossRefGoogle Scholar
  14. 14.
    Sasaki T, Yamada H, Matsumura K, Shimizu T, Kobata A, Endo T (1998) Detection of O-mannosyl glycans in rabbit skeletal muscle α-dystroglycan. Biochim Biophys Acta 1425(3):599–606PubMedCrossRefGoogle Scholar
  15. 15.
    Smalheiser NR, Haslam SM, Sutton-Smith M, Morris HR, Dell A (1998) Structural analysis of sequences O-linked to mannose reveals a novel Lewis X structure in Cranin (Dystroglycan) purified from sheep brain. J Biol Chem 273(37):23698–23703PubMedCrossRefGoogle Scholar
  16. 16.
    Nilsson J, Nilsson J, Larson G, Grahn A (2010) Characterization of site-specific O-glycan structures within the mucin-like domain of α-dystroglycan from human skeletal muscle. Glycobiology 20(9):1160–1169PubMedCrossRefGoogle Scholar
  17. 17.
    Stalnaker SH, Hashmi S, Lim J-M, Aoki K, Porterfield M, Gutierrez-Sanchez G, Wheeler J, Ervasti JM, Bergmann C, Tiemeyer M, Wells L (2010) Site mapping and characterization of O-glycan structures on α-dystroglycan isolated from rabbit skeletal muscle. J Biol Chem 285(32):24882–24891PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56RPubMedCrossRefGoogle Scholar
  19. 19.
    Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T, Muntoni F, Lee H, Nelson SF, Yu L, Campbell KP (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341(6148):896–899PubMedCrossRefGoogle Scholar
  20. 20.
    Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, Kanagawa M, Beltrán-Valero de Bernabé D, Gündeşli H, Willer T, Satz JS, Crawford RW, Burden SJ, Kunz S, Oldstone MBA, Accardi A, Talim B, Muntoni F, Topaloğlu H, Dinçer P, Campbell KP (2011) A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 364(10):939–946PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Geis T, Marquard K, Rödl T, Reihle C, Schirmer S, von Kalle T, Bornemann A, Hehr U, Blankenburg M (2013) Homozygous dystroglycan mutation associated with a novel muscle–eye–brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 14(3):205–213PubMedCrossRefGoogle Scholar
  22. 22.
    Dong M, Noguchi S, Endo Y, Hayashi YK, Yoshida S, Nonaka I, Nishino I (2015) DAG1 mutations associated with asymptomatic hyperCKemia and hypoglycosylation of α-dystroglycan. Neurology 84(3):273–279PubMedCrossRefGoogle Scholar
  23. 23.
    Riemersma M, Mandel H, van Beusekom E, Gazzoli I, Roscioli T, Eran A, Gershoni-Baruch R, Gershoni M, Pietrokovski S, Vissers LE, Lefeber DJ, Willemsen MA, Wevers RA, van Bokhoven H (2015) Absence of α- and β -dystroglycan is associated with Walker-Warburg syndrome. Neurology 84(21):2177–2182PubMedCrossRefGoogle Scholar
  24. 24.
    Tomita S, Inoue N, Maeda Y, Ohishi K, Takeda J, Kinoshita T (1998) A homologue of Saccharomyces cerevisiae Dpm1p is not sufficient for synthesis of dolichol-phosphate-mannose in mammalian cells. J Biol Chem 273(15):9249–9254PubMedCrossRefGoogle Scholar
  25. 25.
    Maeda Y, Tanaka S, Hino J, Kangawa K, Kinoshita T (2000) Human dolichol-phosphate-mannose synthase consists of three subunits, DPM1, DPM2 and DPM3. EMBO J 19(11):2475–2482PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yang AC, Ng BG, Moore SA, Rush J, Waechter CJ, Raymond KM, Willer T, Campbell KP, Freeze HH, Mehta L (2013) Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Mol Genet Metab 110(3):345–351PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Imbach T, Schenk B, Schollen E, Burda P, Stutz A, Grünewald S, Bailie NM, King MD, Jaeken J, Matthijs G, Berger EG, Aebi M, Hennet T (2000) Deficiency of dolichol-phosphate-mannose synthase-1 causes congenital disorder of glycosylation type Ie. J Clin Investig 105(2):233–239PubMedCrossRefGoogle Scholar
  28. 28.
    Kim S, Westphal V, Srikrishna G, Mehta DP, Peterson S, Filiano J, Karnes PS, Patterson MC, Freeze HH (2000) Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie). J Clin Investig 105(2):191–198PubMedCrossRefGoogle Scholar
  29. 29.
    García-Silva MT, Matthijs G, Schollen E, Cabrera JC, Sanchez del Pozo J, Martí Herreros M, Simón R, Maties M, Martín Hernández E, Hennet T, Briones P (2004) Congenital disorder of glycosylation (CDG) type Ie. A new patient. J Inherit Metab Dis 27(5):591–600PubMedCrossRefGoogle Scholar
  30. 30.
    Dancourt J, Vuillaumier-Barrot S, de Baulny HO, Sfaello I, Barnier A, le Bizec C, Dupre T, Durand G, Seta N, Moore SE (2006) A new intronic mutation in the DPM1 gene is associated with a milder form of CDG Ie in two French siblings. Pediatr Res 59(6):835–839PubMedCrossRefGoogle Scholar
  31. 31.
    Maeda Y, Tomita S, Watanabe R, Ohishi K, Kinoshita T (1998) DPM2 regulates biosynthesis of dolichol phosphate-mannose in mammalian cells: correct subcellular localization and stabilization of DPM1, and binding of dolichol phosphate. EMBO J 17(17):4920–4929PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Barone R, Aiello C, Race V, Morava E, Foulquier F, Riemersma M, Passarelli C, Concolino D, Carella M, Santorelli F, Vleugels W, Mercuri E, Garozzo D, Sturiale L, Messina S, Jaeken J, Fiumara A, Wevers RA, Bertini E, Matthijs G, Lefeber DJ (2012) DPM2-CDG: a muscular dystrophy–dystroglycanopathy syndrome with severe epilepsy. Ann Neurol 72(4):550–558PubMedCrossRefGoogle Scholar
  33. 33.
    Lefeber DJ, Schönberger J, Morava E, Guillard M, Huyben KM, Verrijp K, Grafakou O, Evangeliou A, Preijers FW, Manta P, Yildiz J, Grünewald S, Spilioti M, van den Elzen C, Klein D, Hess D, Ashida H, Hofsteenge J, Maeda Y, van den Heuvel L, Lammens M, Lehle L, Wevers RA (2009) Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am J Hum Genet 85(1):76–86PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Fernandez F, Shridas P, Jiang S, Aebi M, Waechter CJ (2002) Expression and characterization of a human cDNA that complements the temperature-sensitive defect in dolichol kinase activity in the yeast sec59-1 mutant: the enzymatic phosphorylation of dolichol and diacylglycerol are catalyzed by separate CTP-mediated kinase activities in Saccharomyces cerevisiae. Glycobiology 12(9):555–562PubMedCrossRefGoogle Scholar
  35. 35.
    Lefeber DJ, de Brouwer APM, Morava E, Riemersma M, Schuurs-Hoeijmakers JHM, Absmanner B, Verrijp K, van den Akker WMR, Huijben K, Steenbergen G, van Reeuwijk J, Jozwiak A, Zucker N, Lorber A, Lammens M, Knopf C, van Bokhoven H, Grünewald S, Lehle L, Kapusta L, Mandel H, Wevers RA (2011) Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet 7(12):e1002427PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kranz C, Jungeblut C, Denecke J, Erlekotte A, Sohlbach C, Debus V, Kehl HG, Harms E, Reith A, Reichel S, Gröbe H, Hammersen G, Schwarzer U, Marquardt T (2007) A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am J Hum Genet 80(3):433–440PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Helander A, Stödberg T, Jaeken J, Matthijs G, Eriksson M, Eggertsen G (2013) Dolichol kinase deficiency (DOLK-CDG) with a purely neurological presentation caused by a novel mutation. Mol Genet Metab 110(3):342–344PubMedCrossRefGoogle Scholar
  38. 38.
    Ning B, Elbein AD (2000) Cloning, expression and characterization of the pig liver GDP-mannose pyrophosphorylase. Eur J Biochem 267(23):6866–6874PubMedCrossRefGoogle Scholar
  39. 39.
    Carss Keren J, Stevens E, Foley AR, Cirak S, Riemersma M, Torelli S, Hoischen A, Willer T, van Scherpenzeel M, Moore Steven A, Messina S, Bertini E, Bönnemann Carsten G, Abdenur Jose E, Grosmann Carla M, Kesari A, Punetha J, Quinlivan R, Waddell Leigh B, Young Helen K, Wraige E, Yau S, Brodd L, Feng L, Sewry C, MacArthur Daniel G, North Kathryn N, Hoffman E, Stemple Derek L, Hurles Matthew E, van Bokhoven H, Campbell Kevin P, Lefeber Dirk J, UK10K Consortium, Lin Y-Y, Muntoni F (2013) Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am J Hum Genet 93(1):29–41PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Belaya K, Rodríguez Cruz PM, Liu WW, Maxwell S, McGowan S, Farrugia ME, Petty R, Walls TJ, Sedghi M, Basiri K, Yue WW, Sarkozy A, Bertoli M, Pitt M, Kennett R, Schaefer A, Bushby K, Parton M, Lochmüller H, Palace J, Muntoni F, Beeson D (2015) Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain 138(Pt 9):2493–2504PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Manya H, Chiba A, Yoshida A, Wang X, Chiba Y, Jigami Y, Margolis RU, Endo T (2004) Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci U S A 101(2):500–505PubMedCrossRefGoogle Scholar
  42. 42.
    Godfrey C, Clement E, Mein R, Brockington M, Smith J, Talim B, Straub V, Robb S, Quinlivan R, Feng L, Jimenez-Mallebrera C, Mercuri E, Manzur AY, Kinali M, Torelli S, Brown SC, Sewry CA, Bushby K, Topaloglu H, North K, Abbs S, Muntoni F (2007) Refining genotype–phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130(10):2725–2735PubMedCrossRefGoogle Scholar
  43. 43.
    Jurado LA, Coloma A, Cruces J (1999) Identification of a human homolog of the drosophila rotated abdomen gene (POMT1) encoding a putative protein O-mannosyl-transferase, and assignment to human chromosome 9q34.1. Genomics 58(2):171–180PubMedCrossRefGoogle Scholar
  44. 44.
    Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A, Celli J, van Beusekom E, van der Zwaag B, Kayserili H, Merlini L, Chitayat D, Dobyns WB, Cormand B, Lehesjoki A-E, Cruces J, Voit T, Walsh CA, van Bokhoven H, Brunner HG (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 71(5):1033–1043PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kim DS, Hayashi YK, Matsumoto H, Ogawa M, Noguchi S, Murakami N, Sakuta R, Mochizuki M, Michele DE, Campbell KP, Nonaka I, Nishino I (2004) POMT1 mutation results in defective glycosylation and loss of laminin-binding activity in α-DG. Neurology 62(6):1009–1011PubMedCrossRefGoogle Scholar
  46. 46.
    Balci B, Uyanik G, Dincer P, Gross C, Willer T, Talim B, Haliloglu G, Kale G, Hehr U, Winkler J, Topaloğlu H (2005) An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord 15(4):271–275PubMedCrossRefGoogle Scholar
  47. 47.
    van Reeuwijk J, Maugenre S, van den Elzen C, Verrips A, Bertini E, Muntoni F, Merlini L, Scheffer H, Brunner HG, Guicheney P, van Bokhoven H (2006) The expanding phenotype of POMT1 mutations: from Walker-Warburg syndrome to congenital muscular dystrophy, microcephaly, and mental retardation. Hum Mutat 27(5):453–459PubMedCrossRefGoogle Scholar
  48. 48.
    D’Amico A, Tessa A, Bruno C, Petrini S, Biancheri R, Pane M, Pedemonte M, Ricci E, Falace A, Rossi A, Mercuri E, Santorelli FM, Bertini E (2006) Expanding the clinical spectrum of POMT1 phenotype. Neurology 66(10):1564–1567PubMedCrossRefGoogle Scholar
  49. 49.
    Bouchet C, Gonzales M, Vuillaumier-Barrot S, Devisme L, Lebizec C, Alanio E, Bazin A, Bessières-Grattagliano B, Bigi N, Blanchet P, Bonneau D, Bonnières M, Carles D, Delahaye S, Fallet-Bianco C, Figarella-Branger D, Gaillard D, Gasser B, Guimiot F, Joubert M, Laurent N, Liprandi A, Loget P, Marcorelles P, Martinovic J, Menez F, Patrier S, Pelluard-Nehmé F, Perez MJ, Rouleau-Dubois C, Triau S, Laquerrière A, Encha-Razavi F, Seta N (2007) Molecular heterogeneity in fetal forms of type II lissencephaly. Hum Mutat 28(10):1020–1027PubMedCrossRefGoogle Scholar
  50. 50.
    Mercuri E, Messina S, Bruno C, Mora M, Pegoraro E, Comi GP, D’Amico A, Aiello C, Biancheri R, Berardinelli A, Boffi P, Cassandrini D, Laverda A, Moggio M, Morandi L, Moroni I, Pane M, Pezzani R, Pichiecchio A, Pini A, Minetti C, Mongini T, Mottarelli E, Ricci E, Ruggieri A, Saredi S, Scuderi C, Tessa A, Toscano A, Tortorella G, Trevisan CP, Uggetti C, Vasco G, Santorelli FM, Bertini E (2009) Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology 72(21):1802–1809PubMedCrossRefGoogle Scholar
  51. 51.
    Willer T, Amselgruber W, Deutzmann R, Strahl S (2002) Characterization of POMT2, a novel member of the PMT protein O-mannosyltransferase family specifically localized to the acrosome of mammalian spermatids. Glycobiology 12(11):771–783PubMedCrossRefGoogle Scholar
  52. 52.
    van Reeuwijk J, Janssen M, van den Elzen C, Beltran-Valero de Bernabé D, Sabatelli P, Merlini L, Boon M, Scheffer H, Brockington M, Muntoni F, Huynen MA, Verrips A, Walsh CA, Barth PG, Brunner HG, van Bokhoven H (2005) POMT2 mutations cause α-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet 42(12):907–912PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yanagisawa A, Bouchet C, Van den Bergh PY, Cuisset JM, Viollet L, Leturcq F, Romero NB, Quijano-Roy S, Fardeau M, Seta N, Guicheney P (2007) New POMT2 mutations causing congenital muscular dystrophy: identification of a founder mutation. Neurology 69(12):1254–1260PubMedCrossRefGoogle Scholar
  54. 54.
    Yanagisawa A, Bouchet C, Quijano-Roy S, Vuillaumier-Barrot S, Clarke N, Odent S, Rodriguez D, Romero NB, Osawa M, Endo T, Taratuto AL, Seta N, Guicheney P (2009) POMT2 intragenic deletions and splicing abnormalities causing congenital muscular dystrophy with mental retardation. Eur J Med Genet 52(4):201–206PubMedCrossRefGoogle Scholar
  55. 55.
    Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M, Inazu T, Mitsuhashi H, Takahashi S, Takeuchi M, Herrmann R, Straub V, Talim B, Voit T, Topaloglu H, Toda T, Endo T (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1(5):717–724PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang W, Betel D, Schachter H (2002) Cloning and expression of a novel UDP-GlcNAc:α-D-mannoside β 1,2-N-acetylglucosaminyltransferase homologous to UDP-GlcNAc:α-3-D-mannoside β 1,2-N-acetylglucosaminyltransferase I. Biochem J 361(Pt 1):153–162PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Manya H, Sakai K, Kobayashi K, Taniguchi K, Kawakita M, Toda T, Endo T (2003) Loss-of-function of an N-acetylglucosaminyltransferase, POMGnT1, in muscle–eye–brain disease. Biochem Biophys Res Commun 306(1):93–97PubMedCrossRefGoogle Scholar
  58. 58.
    Taniguchi K, Kobayashi K, Saito K, Yamanouchi H, Ohnuma A, Hayashi YK, Manya H, Jin DK, Lee M, Parano E, Falsaperla R, Pavone P, Van Coster R, Talim B, Steinbrecher A, Straub V, Nishino I, Topaloglu H, Voit T, Endo T, Toda T (2003) Worldwide distribution and broader clinical spectrum of muscle–eye–brain disease. Hum Mol Genet 12(5):527–534PubMedCrossRefGoogle Scholar
  59. 59.
    Hehr U, Uyanik G, Gross C, Walter MC, Bohring A, Cohen M, Oehl-Jaschkowitz B, Bird LM, Shamdeen GM, Bogdahn U, Schuierer G, Topaloglu H, Aigner L, Lochmüller H, Winkler J (2007) Novel POMGnT1 mutations define broader phenotypic spectrum of muscle–eye–brain disease. Neurogenetics 8(4):279–288PubMedCrossRefGoogle Scholar
  60. 60.
    Clement EM, Godfrey C, Tan J, Brockington M, Torelli S, Feng L, Brown SC, Jimenez-Mallebrera C, Sewry CA, Longman C, Mein R, Abbs S, Vajsar J, Schachter H, Muntoni F (2008) Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch Neurol 65(1):137–141PubMedCrossRefGoogle Scholar
  61. 61.
    Raducu M, Baets J, Fano O, Van Coster R, Cruces J (2012) Promoter alteration causes transcriptional repression of the POMGNT1 gene in limb-girdle muscular dystrophy type 2O. Eur J Hum Genet 20(9):945–952PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wang N-H, Chen S-J, Yang C-F, Chen H-W, Chuang H-P, Lu Y-H, Chen C-H, Wu J-Y, Niu D-M, Chen Y-T (2016) Homozygosity mapping and whole-genome sequencing links a missense mutation in POMGNT1 to autosomal recessive retinitis pigmentosa. Investig Ophthalmol Vis Sci 57(8):3601–3609CrossRefGoogle Scholar
  63. 63.
    Xu M, Yamada T, Sun Z, Eblimit A, Lopez I, Wang F, Manya H, Xu S, Zhao L, Li Y, Kimchi A, Sharon D, Sui R, Endo T, Koenekoop RK, Chen R (2016) Mutations in POMGNT1 cause non-syndromic retinitis pigmentosa. Hum Mol Genet 25(8):1479–1488PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Manzini MC, Tambunan Dimira E, Hill RS, Yu Tim W, Maynard Thomas M, Heinzen Erin L, Shianna Kevin V, Stevens Christine R, Partlow Jennifer N, Barry Brenda J, Rodriguez J, Gupta Vandana A, Al-Qudah A-K, Eyaid Wafaa M, Friedman Jan M, Salih Mustafa A, Clark R, Moroni I, Mora M, Beggs Alan H, Gabriel Stacey B, Walsh Christopher A (2012) Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 91(3):541–547PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA, Velds A, Kerkhoven RM, Carette JE, Topaloglu H, Meinecke P, Wessels MW, Lefeber DJ, Whelan SP, van Bokhoven H, Brummelkamp TR (2013) Deciphering the glycosylome of dystroglycanopathies using haploid screens for Lassa virus entry. Science 340(6131):479–483PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Di Costanzo S, Balasubramanian A, Pond HL, Rozkalne A, Pantaleoni C, Saredi S, Gupta VA, Sunu CM, Yu TW, Kang PB, Salih MA, Mora M, Gussoni E, Walsh CA, Manzini MC (2014) POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet 23(21):5781–5792PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    von Renesse A, Petkova MV, Lützkendorf S, Heinemeyer J, Gill E, Hübner C, von Moers A, Stenzel W, Schuelke M (2014) POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J Med Genet 51(4):275–282CrossRefGoogle Scholar
  68. 68.
    Hiruma T, Togayachi A, Okamura K, Sato T, Kikuchi N, Kwon Y-D, Nakamura A, Fujimura K, Gotoh M, Tachibana K, Ishizuka Y, Noce T, Nakanishi H, Narimatsu H (2004) A novel human β 1,3-N-acetylgalactosaminyltransferase that synthesizes a unique carbohydrate structure, GalNAcβ 1-3GlcNAc. J Biol Chem 279(14):14087–14095PubMedCrossRefGoogle Scholar
  69. 69.
    Stevens E, Carss Keren J, Cirak S, Foley AR, Torelli S, Willer T, Tambunan Dimira E, Yau S, Brodd L, Sewry Caroline A, Feng L, Haliloglu G, Orhan D, Dobyns William B, Enns Gregory M, Manning M, Krause A, Salih Mustafa A, Walsh Christopher A, Hurles M, Campbell Kevin P, Manzini MC, UK10K Consortium, Stemple D, Lin Y-Y, Muntoni F (2013) Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am J Hum Genet 92(3):354–365Google Scholar
  70. 70.
    Kanagawa M, Kobayashi K, Tajiri M, Manya H, Kuga A, Yamaguchi Y, Akasaka-Manya K, Furukawa J-I, Mizuno M, Kawakami H, Shinohara Y, Wada Y, Endo T, Toda T (2016) Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep 14(9):2209–2223PubMedCrossRefGoogle Scholar
  71. 71.
    Vuillaumier-Barrot S, Bouchet-Séraphin C, Chelbi M, Devisme L, Quentin S, Gazal S, Laquerrière A, Fallet-Bianco C, Loget P, Odent S, Carles D, Bazin A, Aziza J, Clemenson A, Guimiot F, Bonnière M, Monnot S, Bole-Feysot C, Bernard J-P, Loeuillet L, Gonzales M, Socha K, Grandchamp B, Attié-Bitach T, Encha-Razavi F, Seta N (2012) Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am J Hum Genet 91(6):1135–1143PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Roscioli T, Kamsteeg E-J, Buysse K, Maystadt I, van Reeuwijk J, van den Elzen C, van Beusekom E, Riemersma M, Pfundt R, Vissers LELM, Schraders M, Altunoglu U, Buckley MF, Brunner HG, Grisart B, Zhou H, Veltman JA, Gilissen C, Mancini GMS, Delrée P, Willemsen MA, Ramadza DP, Chitayat D, Bennett C, Sheridan E, Peeters EAJ, Tan-Sindhunata GMB, de Die-Smulders CE, Devriendt K, Kayserili H, El-Hashash OAE-F, Stemple DL, Lefeber DJ, Lin Y-Y, van Bokhoven H (2012) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Nat Genet 44(5):581–585PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Willer T, Lee H, Lommel M, Yoshida-Moriguchi T, Beltrán-Valero de Bernabé D, Venzke D, Cirak S, Schachter H, Vajsar J, Voit T, Muntoni F, Loder AS, Dobyns WB, Winder TL, Strahl S, Mathews KD, Nelson SF, Moore SA, Campbell KP (2012) ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet 44(5):575–580PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Tasca G, Moro F, Aiello C, Cassandrini D, Fiorillo C, Bertini E, Bruno C, Santorelli FM, Ricci E (2013) Limb-girdle muscular dystrophy with α-dystroglycan deficiency and mutations in the ISPD gene. Neurology 80(10):963–965PubMedCrossRefGoogle Scholar
  75. 75.
    Taniguchi-Ikeda M, Kobayashi K, Kanagawa M, Yu C-C, Mori K, Oda T, Kuga A, Kurahashi H, Akman HO, DiMauro S, Kaji R, Yokota T, Takeda SI, Toda T (2011) Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478(7367):127–131PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, Segawa M, Yoshioka M, Saito K, Osawa M, Hamano K, Sakakihara Y, Nonaka I, Nakagome Y, Kanazawa I, Nakamura Y, Tokunaga K, Toda T (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394(6691):388–392PubMedCrossRefGoogle Scholar
  77. 77.
    Kondo-Iida E, Kobayashi K, Watanabe M, Sasaki J, Kumagai T, Koide H, Saito K, Osawa M, Nakamura Y, Toda T (1999) Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet 8(12):2303–2309PubMedCrossRefGoogle Scholar
  78. 78.
    Sasaki J, Ishikawa K, Kobayashi K, Kondo-Iida E, Fukayama M, Mizusawa H, Takashima S, Sakakihara Y, Nakamura Y, Toda T (2000) Neuronal expression of the fukutin gene. Hum Mol Genet 9(20):3083–3090PubMedCrossRefGoogle Scholar
  79. 79.
    Hayashi YK, Ogawa M, Tagawa K, Noguchi S, Ishihara T, Nonaka I, Arahata K (2001) Selective deficiency of α-dystroglycan in Fukuyama-type congenital muscular dystrophy. Neurology 57(1):115–121PubMedCrossRefGoogle Scholar
  80. 80.
    Esapa CT, Benson MA, Schröder JE, Martin-Rendon E, Brockington M, Brown SC, Muntoni F, Kröger S, Blake DJ (2002) Functional requirements for fukutin-related protein in the Golgi apparatus. Hum Mol Genet 11(26):3319–3331PubMedCrossRefGoogle Scholar
  81. 81.
    Beltrán-Valero de Bernabé D, van Bokhoven H, van Beusekom E, Van den Akker W, Kant S, Dobyns WB, Cormand B, Currier S, Hamel B, Talim B, Topaloglu H, Brunner HG (2003) A homozygous nonsense mutation in the Fukutin gene causes a Walker-Warburg syndrome phenotype. J Med Genet 40(11):845–848PubMedCrossRefGoogle Scholar
  82. 82.
    Silan F, Yoshioka M, Kobayashi K, Simsek E, Tunc M, Alper M, Cam M, Guven A, Fukuda Y, Kinoshita M, Kocabay K, Toda T (2003) A new mutation of the fukutin gene in a non-Japanese patient. Ann Neurol 53(3):392–396PubMedCrossRefGoogle Scholar
  83. 83.
    Watanabe M, Kobayashi K, Jin F, Park KS, Yamada T, Tokunaga K, Toda T (2005) Founder SVA retrotransposal insertion in Fukuyama-type congenital muscular dystrophy and its origin in Japanese and northeast Asian populations. Am J Med Genet A 138(4):344–348PubMedCrossRefGoogle Scholar
  84. 84.
    Godfrey C, Escolar D, Brockington M, Clement EM, Mein R, Jimenez-Mallebrera C, Torelli S, Feng L, Brown SC, Sewry CA, Rutherford M, Shapira Y, Abbs S, Muntoni F (2006) Fukutin gene mutations in steroid-responsive limb girdle muscular dystrophy. Ann Neurol 60(5):603–610PubMedCrossRefGoogle Scholar
  85. 85.
    Murakami T, Hayashi YK, Noguchi S, Ogawa M, Nonaka I, Tanabe Y, Ogino M, Takada F, Eriguchi M, Kotooka N, Campbell KP, Osawa M, Nishino I (2006) Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann Neurol 60(5):597–602PubMedCrossRefGoogle Scholar
  86. 86.
    Cotarelo RP, Valero MC, Prados B, Peña A, Rodríguez L, Fano O, Marco JJ, Martínez-Frías ML, Cruces J (2008) Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker-Warburg syndrome. Clin Genet 73(2):139–145PubMedCrossRefGoogle Scholar
  87. 87.
    Puckett RL, Moore SA, Winder TL, Willer T, Romansky SG, Covault KK, Campbell KP, Abdenur JE (2009) Further evidence of Fukutin mutations as a cause of childhood onset limb-girdle muscular dystrophy without mental retardation. Neuromuscul Disord 19(5):352–356PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Tachikawa M, Kanagawa M, Yu C-C, Kobayashi K, Toda T (2012) Mislocalization of fukutin protein by disease-causing missense mutations can be rescued with treatments directed at folding amelioration. J Biol Chem 287(11):8398–8406PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Brockington M, Yuva Y, Prandini P, Brown SC, Torelli S, Benson MA, Herrmann R, Anderson LVB, Bashir R, Burgunder J-M, Fallet S, Romero N, Fardeau M, Straub V, Storey G, Pollitt C, Richard I, Sewry CA, Bushby K, Voit T, Blake DJ, Muntoni F (2001) Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet 10(25):2851–2859PubMedCrossRefGoogle Scholar
  90. 90.
    de Paula F, Vieira N, Starling A, Yamamoto LU, Lima B, de Cássia Pavanello R, Vainzof M, Nigro V, Zatz M (2003) Asymptomatic carriers for homozygous novel mutations in the FKRP gene: the other end of the spectrum. Eur J Hum Genet 11(12):923–930PubMedCrossRefGoogle Scholar
  91. 91.
    Beltrán-Valero de Bernabé D, Voit T, Longman C, Steinbrecher A, Straub V, Yuva Y, Herrmann R, Sperner J, Korenke C, Diesen C, Dobyns WB, Brunner HG, van Bokhoven H, Brockington M, Muntoni F (2004) Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker–Warburg syndrome. J Med Genet 41(5):e61PubMedCrossRefGoogle Scholar
  92. 92.
    Manya H, Yamaguchi Y, Kanagawa M, Kobayashi K, Tajiri M, Akasaka-Manya K, Kawakami H, Mizuno M, Wada Y, Toda T, Endo T (2016) The muscular dystrophy gene TMEM5 encodes a ribitol β 1,4-xylosyltransferase required for the functional glycosylation of dystroglycan. J Biol Chem 291(47):24618–24627PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Praissman JL, Live DH, Wang S, Ramiah A, Chinoy ZS, Boons G-J, Moremen KW, Wells L (2014) B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan. eLife 3:e03943PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Willer T, Inamori K-I, Venzke D, Harvey C, Morgensen G, Hara Y, Beltrán Valero de Bernabé D, Yu L, Wright KM, Campbell KP (2014) The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. eLife 3:e03941PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    Bao X, Kobayashi M, Hatakeyama S, Angata K, Gullberg D, Nakayama J, Fukuda MN, Fukuda M (2009) Tumor suppressor function of laminin-binding α-dystroglycan requires a distinct β 3-N-acetylglucosaminyltransferase. Proc Natl Acad Sci U S A 106(29):12109–12114PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Buysse K, Riemersma M, Powell G, van Reeuwijk J, Chitayat D, Roscioli T, Kamsteeg E-J, van den Elzen C, van Beusekom E, Blaser S, Babul-Hirji R, Halliday W, Wright GJ, Stemple DL, Lin Y-Y, Lefeber DJ, van Bokhoven H (2013) Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker–Warburg syndrome. Hum Mol Genet 22(9):1746–1754PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Inamori K-I, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335(6064):93–96PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Clement E, Mercuri E, Godfrey C, Smith J, Robb S, Kinali M, Straub V, Bushby K, Manzur A, Talim B, Cowan F, Quinlivan R, Klein A, Longman C, McWilliam R, Topaloglu H, Mein R, Abbs S, North K, Barkovich AJ, Rutherford M, Muntoni F (2008) Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 64(5):573–582PubMedCrossRefGoogle Scholar
  99. 99.
    Peyrard M, Seroussi E, Sandberg-Nordqvist A-C, Xie Y-G, Han F-Y, Fransson I, Collins J, Dunham I, Kost-Alimova M, Imreh S, Dumanski JP (1999) The human LARGE gene from 22q12.3-q13.1 is a new, distinct member of the glycosyltransferase gene family. Proc Natl Acad Sci U S A 96(2):598–603PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Longman C, Brockington M, Torelli S, Jimenez-Mallebrera C, Kennedy C, Khalil N, Feng L, Saran RK, Voit T, Merlini L, Sewry CA, Brown SC, Muntoni F (2003) Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of α-dystroglycan. Hum Mol Genet 12(21):2853–2861PubMedCrossRefGoogle Scholar
  101. 101.
    Kanagawa M, Saito F, Kunz S, Yoshida-Moriguchi T, Barresi R, Kobayashi YM, Muschler J, Dumanski JP, Michele DE, Oldstone MBA, Campbell KP (2004) Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell 117(7):953–964PubMedCrossRefGoogle Scholar
  102. 102.
    Brockington M, Torelli S, Prandini P, Boito C, Dolatshad NF, Longman C, Brown SC, Muntoni F (2005) Localization and functional analysis of the LARGE family of glycosyltransferases: significance for muscular dystrophy. Hum Mol Genet 14(5):657–665PubMedCrossRefGoogle Scholar
  103. 103.
    van Reeuwijk J, Grewal P, Salih MM, Beltrán-Valero de Bernabé D, McLaughlan J, Michielse C, Herrmann R, Hewitt J, Steinbrecher A, Seidahmed M, Shaheed M, Abomelha A, Brunner H, Bokhoven H, Voit T (2007) Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum Genet 121(6):685–690PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Clarke NF, Maugenre S, Vandebrouck A, Urtizberea JA, Willer T, Peat RA, Gray F, Bouchet C, Manya H, Vuillaumier-Barrot S, Endo T, Chouery E, Campbell KP, Mégarbané A, Guicheney P (2011) Congenital muscular dystrophy type 1D (MDC1D) due to a large intragenic insertion/deletion, involving intron 10 of the LARGE gene. Eur J Hum Genet 19(4):452–457PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Goddeeris MM, Wu B, Venzke D, Yoshida-Moriguchi T, Saito F, Matsumura K, Moore SA, Campbell KP (2013) LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy. Nature 503(7474):136–140PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lee JK, Matthews RT, Lim J-M, Swanier K, Wells L, Pierce JM (2012) Developmental expression of the neuron-specific N-acetylglucosaminyltransferase Vb (GnT-Vb/IX) and identification of its in vivo glycan products in comparison with those of its paralog, GnT-V. J Biol Chem 287(34):28526–28536PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Inamori K-I, Endo T, Gu J, Matsuo I, Ito Y, Fujii S, Iwasaki H, Narimatsu H, Miyoshi E, Honke K, Taniguchi N (2004) Nacetylglucosaminyltransferase IX acts on the GlcNAcβ 1,2-Manα1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan. J Biol Chem 279(4):2337–2340PubMedCrossRefGoogle Scholar
  108. 108.
    Nishihara S, Iwasaki H, Nakajima K, Togayachi A, Ikehara Y, Kudo T, Kushi Y, Furuya A, Shitara K, Narimatsu H (2003) α1,3-fucosyltransferase IX (Fut9) determines Lewis X expression in brain. Glycobiology 13(6):445–455PubMedCrossRefGoogle Scholar
  109. 109.
    Bleckmann C, Geyer H, Lieberoth A, Splittstoesser F, Liu Y, Feizi T, Schachner M, Kleene R, Reinhold V, Geyer R (2009) O-glycosylation pattern of CD24 from mouse brain. Biol Chem 390(7):627–645PubMedCrossRefGoogle Scholar
  110. 110.
    Nakagawa N, Takematsu H, Oka S (2013) HNK-1 sulfotransferase-dependent sulfation regulating laminin-binding glycans occurs in the post-phosphoryl moiety on α-dystroglycan. Glycobiology 23(9):1066–1074PubMedCrossRefGoogle Scholar
  111. 111.
    Praissman JL, Wells L (2014) Mammalian O-mannosylation pathway: glycan structures, enzymes, and protein substrates. Biochemistry 53(19):3066–3078PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Bouchet-Séraphin C, Vuillaumier-Barrot S, Seta N (2015) Dystroglycanopathies: about numerous genes involved in glycosylation of one single glycoprotein. J Neuromuscul Dis 2(1):27–38PubMedGoogle Scholar
  113. 113.
    Endo T (2015) Glycobiology of α-dystroglycan and muscular dystrophy. J Biochem (Tokyo) 157(1):1–12CrossRefGoogle Scholar
  114. 114.
    Yoshida-Moriguchi T, Campbell KP (2015) Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 25(7):702–713PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Pilz DT, Quarrell OWJ (1996) Syndromes with lissencephaly. J Med Genet 33(4):319–323PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Mercuri E, Muntoni F (2012) The ever-expanding spectrum of congenital muscular dystrophies. Ann Neurol 72(1):9–17PubMedCrossRefGoogle Scholar
  117. 117.
    Bönnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, Muntoni F, Sewry C, Béroud C, Mathews KD, Moore SA, Bellini J, Rutkowski A, North KN, Members of the International Standard of Care Committee for Congenital Muscular Dystrophies (2014) Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 24(4):289–311PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    van der Kooi AJ, de Voogt WG, Barth PG, Busch HFM, Jennekens FGI, Jongen PJH, de Visser M (1998) The heart in limb girdle muscular dystrophy. Heart 79(1):73–77PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Poppe M, Cree L, Bourke J, Eagle M, Anderson LVB, Birchall D, Brockington M, Buddles M, Busby M, Muntoni F, Wills A, Bushby K (2003) The phenotype of limb-girdle muscular dystrophy type 2I. Neurology 60(8):1246–1251PubMedCrossRefGoogle Scholar
  120. 120.
    Poppe M, Bourke J, Eagle M, Frosk P, Wrogemann K, Greenberg C, Muntoni F, Voit T, Straub V, Hilton-Jones D, Shirodaria C, Bushby K (2004) Cardiac and respiratory failure in limb-girdle muscular dystrophy 2I. Ann Neurol 56(5):738–741PubMedCrossRefGoogle Scholar
  121. 121.
    Jimenez-Mallebrera C, Torelli S, Feng L, Kim J, Godfrey C, Clement E, Mein R, Abbs S, Brown SC, Campbell KP, Kröger S, Talim B, Topaloglu H, Quinlivan R, Roper H, Childs AM, Kinali M, Sewry CA, Muntoni F (2009) A comparative study of α-dystroglycan glycosylation in dystroglycanopathies suggests that the hypoglycosylation of α-dystroglycan does not consistently correlate with clinical severity. Brain Pathol 19(4):596–611PubMedCrossRefGoogle Scholar
  122. 122.
    Durbeej M, Henry MD, Campbell KP (1998) Dystroglycan in development and disease. Curr Opin Cell Biol 10(5):594–601PubMedCrossRefGoogle Scholar
  123. 123.
    Cohn RD, Henry MD, Michele DE, Barresi R, Saito F, Moore SA, Flanagan JD, Skwarchuk MW, Robbins ME, Mendell JR, Williamson RA, Campbell KP (2002) Disruption of Dag1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell 110(5):639–648PubMedCrossRefGoogle Scholar
  124. 124.
    Awano H, Blaeser A, Keramaris E, Xu L, Tucker J, Wu B, Lu P, Lu QL (2015) Restoration of functional glycosylation of α-Dystroglycan in FKRP mutant mice is associated with muscle regeneration. Am J Pathol 185(7):2025–2037PubMedCrossRefGoogle Scholar
  125. 125.
    Barresi R, Michele DE, Kanagawa M, Harper HA, Dovico SA, Satz JS, Moore SA, Zhang W, Schachter H, Dumanski JP, Cohn RD, Nishino I, Campbell KP (2004) LARGE can functionally bypass α-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med 10(7):696–703PubMedCrossRefGoogle Scholar
  126. 126.
    Kanagawa M, Nishimoto A, Chiyonobu T, Takeda S, Miyagoe-Suzuki Y, Wang F, Fujikake N, Taniguchi M, Lu Z, Tachikawa M, Nagai Y, Tashiro F, Miyazaki J-I, Tajima Y, Takeda S, Endo T, Kobayashi K, Campbell KP, Toda T (2009) Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy. Hum Mol Genet 18(4):621–631PubMedCrossRefGoogle Scholar
  127. 127.
    Kanagawa M, Yu C-C, Ito C, Fukada S-I, Hozoji-Inada M, Chiyo T, Kuga A, Matsuo M, Sato K, Yamaguchi M, Ito T, Ohtsuka Y, Katanosaka Y, Miyagoe-Suzuki Y, Naruse K, Kobayashi K, Okada T, Takeda SI, Toda T (2013) Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression. Hum Mol Genet 22(15):3003–3015PubMedCrossRefGoogle Scholar
  128. 128.
    Xu L, Lu PJ, Wang C-H, Keramaris E, Qiao C, Xiao B, Blake DJ, Xiao X, Lu QL (2013) Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of α-dystroglycan and improves muscle functions. Mol Ther 21(10):1832–1840PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Qiao C, Wang C-H, Zhao C, Lu P, Awano H, Xiao B, Li J, Yuan Z, Dai Y, Martin CB, Li J, Lu Q, Xiao X (2014) Muscle and heart function restoration in a limb girdle muscular dystrophy 2I (LGMD2I) mouse model by systemic FKRP gene delivery. Mol Ther 22(11):1890–1899PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Vannoy CH, Xiao W, Lu P, Xiao X, Lu QL (2017) Efficacy of gene therapy is dependent on disease progression in dystrophic mice with mutations in the FKRP gene. Mol Ther Methods Clin Dev 5:31–42PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Yu M, He Y, Wang K, Zhang P, Zhang S, Hu H (2013) Adeno-associated viral-mediated LARGE gene therapy rescues the muscular dystrophic phenotype in mouse models of dystroglycanopathy. Hum Gene Ther 24(3):317–330PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Vannoy CH, Xu L, Keramaris E, Lu P, Xiao X, Lu QL (2014) Adeno-associated virus-mediated overexpression of LARGE rescues α-dystroglycan function in dystrophic mice with mutations in the fukutin-related protein. Hum Gene Ther Methods 25(3):187–196PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Patnaik SK, Stanley P (2005) Mouse large can modify complex N- and mucin O-glycans on α-dystroglycan to induce laminin binding. J Biol Chem 280(21):20851–20859PubMedCrossRefGoogle Scholar
  134. 134.
    Brockington M, Torelli S, Sharp PS, Liu K, Cirak S, Brown SC, Wells DJ, Muntoni F (2010) Transgenic overexpression of LARGE induces α-dystroglycan hyperglycosylation in skeletal and cardiac muscle. PLoS One 5(12):e14434PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Whitmore C, Fernandez-Fuente M, Booler H, Parr C, Kavishwar M, Ashraf A, Lacey E, Kim J, Terry R, Ackroyd MR, Wells KE, Muntoni F, Wells DJ, Brown SC (2014) The transgenic expression of LARGE exacerbates the muscle phenotype of dystroglycanopathy mice. Hum Mol Genet 23(7):1842–1855PubMedCrossRefGoogle Scholar
  136. 136.
    Saito F, Kanagawa M, Ikeda M, Hagiwara H, Masaki T, Ohkuma H, Katanosaka Y, Shimizu T, Sonoo M, Toda T, Matsumura K (2014) Overexpression of LARGE suppresses muscle regeneration via down-regulation of insulin-like growth factor 1 and aggravates muscular dystrophy in mice. Hum Mol Genet 23(17):4543–4558PubMedCrossRefGoogle Scholar
  137. 137.
    Ohtsuka Y, Kanagawa M, Yu C-C, Ito C, Chiyo T, Kobayashi K, Okada T, Takeda SI, Toda T (2015) Fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Sci Rep 5:8316PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Hildyard JCW, Lacey E, Booler H, Hopkinson M, Wells DJ, Brown SC (2016) Transgenic rescue of the LARGEmyd mouse: a LARGE therapeutic window? PLoS One 11(7):e0159853PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Thomas PJ, Xu R, Martin PT (2016) B4GALNT2 (GALGT2) gene therapy reduces skeletal muscle pathology in the FKRP P448L mouse model of limb girdle muscular dystrophy 2I. Am J Pathol 186(9):2429–2448PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Nguyen HH, Jayasinha V, Xia B, Hoyte K, Martin PT (2002) Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc Natl Acad Sci U S A 99(8):5616–5621PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Xu R, Chandrasekharan K, Yoon JH, Camboni M, Martin PT (2007) Overexpression of the cytotoxic T cell (CT) carbohydrate inhibits muscular dystrophy in the dyW mouse model of congenital muscular dystrophy 1A. Am J Pathol 171(1):181–199PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Xu R, DeVries S, Camboni M, Martin PT (2009) Overexpression of Galgt2 reduces dystrophic pathology in the skeletal muscles of alpha sarcoglycan-deficient mice. Am J Pathol 175(1):235–247PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Vannoy CH, Zhou H, Qiao C, Xiao X, Bang AG, Lu QL (2017) Adeno-associated virus–mediated mini-Agrin delivery is unable to rescue disease phenotype in a mouse model of limb girdle muscular dystrophy type 2I. Am J Pathol 187(2):431–440PubMedCrossRefGoogle Scholar
  144. 144.
    Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD, Partridge TA, Lu QL (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12(2):175177CrossRefGoogle Scholar
  145. 145.
    van Deutekom JCT, Bremmer-Bout M, Janson AAM, Ginjaar IB, Baas F, den Dunnen JT, van Ommen G-JT (2001) Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet 10(15):1547–1554PubMedCrossRefGoogle Scholar
  146. 146.
    Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J, Jadoon A, Bou-Gharios G, Partridge T (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102(1):198–203PubMedCrossRefGoogle Scholar
  147. 147.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Charles H. Vannoy
    • 1
  • Anthony Blaeser
    • 1
  • Qi L. Lu
    • 1
    Email author
  1. 1.McColl-Lockwood Laboratory for Muscular Dystrophy ResearchCarolinas Medical Center, Atrium HealthCharlotteUSA

Personalised recommendations