Advertisement

Advances in Molecular Diagnostic Approaches for Biothreat Agents

  • Meghana Rastogi
  • Sunit K. Singh
Chapter

Abstract

The advancement in Molecular techniques has been implicated in the development of sophisticated, high-end diagnostic platform and point-of-care (POC) devices for the detection of biothreat agents. Different molecular and immunological approaches such as Immunochromatographic and lateral flow assays, Enzyme-linked Immunosorbent assays (ELISA), Biosensors, Isothermal amplification assays, Nucleic acid amplification tests (NAATs), Next Generation Sequencers (NGS), Microarrays and Microfluidics have been used for a long time as detection strategies of the biothreat agents. In addition, several point of care (POC) devices have been approved by FDA and commercialized in markets. The high-end molecular platforms like NGS and Microarray are time-consuming, costly, and produce huge amount of data. Therefore, the future prospects of molecular based technique should focus on developing quick, user-friendly, cost-effective and portable devices against biological attacks and surveillance programs.

Keywords

Point of care diagnostics Molecular diagnostics Portable diagnostic devices Biodefense and diagnostics Biothreat agents and diagnostics 

References

  1. 1.
    Centers for Disease Control and Prevention: Emergency preparedness and response: bioterrorism agents/diseases. Centers for Disease Control and Prevention. Centers for Disease Control and Prevention. 2017. https://emergency.cdc.gov/agent/agentlist-category.asp. Accessed 20 Jun 2018.
  2. 2.
    Golding CG, Lamboo LL, Beniac DR, Booth TF. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep. 2016;6:26516.  https://doi.org/10.1038/srep26516.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Goldsmith CS, Miller SE. Modern uses of electron microscopy for detection of viruses. Clin Microbiol Rev. 2009;22:552–63.  https://doi.org/10.1128/CMR.00027-09.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Souf S. Recent advances in diagnostic testing for viral infections. Biosci Horiz. 2016;9:hzw010.  https://doi.org/10.1093/biohorizons/hzw010.CrossRefGoogle Scholar
  5. 5.
    Bailes J, Mayoss S, Teale P, Soloviev M. Gold nanoparticle antibody conjugates for use in competitive lateral flow assays. Methods Mol Biol. 2012;906:45–55.  https://doi.org/10.1007/978-1-61779-953-2_4.CrossRefPubMedGoogle Scholar
  6. 6.
    Hampl J, Hall M, Mufti NA, Yao YM, MacQueen DB, Wright WH, Cooper DE. Upconverting phosphor reporters in immunochromatographic assays. Anal Biochem. 2001;288:176–87.  https://doi.org/10.1006/abio.2000.4902.CrossRefPubMedGoogle Scholar
  7. 7.
    Ortega-Vinuesa JL, Bastos-González D. A review of factors affecting the performances of latex agglutination tests. J Biomater Sci Polym Ed. 2001;12:379–408.  https://doi.org/10.1163/156856201750195289.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang J, et al. Simultaneous detection of five biothreat agents in powder samples by a multiplexed suspension array. Immunopharmacol Immunotoxicol. 2009b;31:417–27.  https://doi.org/10.1080/08923970902740837.CrossRefPubMedGoogle Scholar
  9. 9.
    Environics Oy. ENVI assay system; biodefence tests. Environics Oy. 2018. https://www.environics.fi/product/envi-assay-system/. Accessed 20 Jun 2018.
  10. 10.
    New Horizons Diagnostics Inc. SMART-II Anthrax (spore). New Horizons Diagnostics. http://www.nhdiag.com/anthrax.shtml. Accessed 20 Jun 2018.
  11. 11.
    Response Biomedical. Response biodefense: portable, rapid biological field detection system. Response Biomedical Inc. 2018. http://responsebio.com/biodefense. Accessed 20 June 2018.
  12. 12.
    GenPrime. Prime alert bio-detection system. GenPrime. 2017. http://www.genprime.com/prime-alert. Accessed 20 Jun 2018
  13. 13.
    CBRNE Tech Index. Lateral flow/hand held immunoassay. MRI-Global. 2014. http://www.cbrnetechindex.com/Biological-Detection/Technology-BD/Immunological-BD-T/Lateral-Flow-Hand-Held-Immunoassay-BD-I. Accessed 20 Jun 2018.
  14. 14.
    Pal V, Sharma MK, Sharma SK, Goel AK. Biological warfare agents and their detection and monitoring techniques. Def Sci J. 2016;66:13.  https://doi.org/10.14429/dsj.66.10704.CrossRefGoogle Scholar
  15. 15.
    Gomes-Solecki MJ, Savitt AG, Rowehl R, Glass JD, Bliska JB, Dattwyler RJ. LcrV capture enzyme-linked immunosorbent assay for detection of Yersinia pestis from human samples. Clin Diagn Lab Immunol. 2005;12:339–46.  https://doi.org/10.1128/CDLI.12.2.339-346.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jenko KL, et al. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins. The Analyst. 2014;139:5093–102.  https://doi.org/10.1039/c4an01270d.CrossRefPubMedGoogle Scholar
  17. 17.
    Saijo M, Niikura M, Morikawa S, Ksiazek TG, Meyer RF, Peters CJ, Kurane I. Enzyme-linked immunosorbent assays for detection of antibodies to Ebola and Marburg viruses using recombinant nucleoproteins. J Clin Microbiol. 2001;39:1–7.  https://doi.org/10.1128/JCM.39.1.1-7.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sharma N, et al. Detection of Francisella tularensis-specific antibodies in patients with tularemia by a novel competitive enzyme-linked immunosorbent assay. Clin Vaccine Immunol. 2013;20:9–16.  https://doi.org/10.1128/CVI.00516-12.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Suttisunhakul V, et al. Development of rapid enzyme-linked immunosorbent assays for detection of antibodies to Burkholderia pseudomallei. J Clin Microbiol. 2016;54:1259–68.  https://doi.org/10.1128/JCM.02856-15.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tiwari AK, Kumar S, Pal V, Bhardwaj B, Rai GP. Evaluation of the recombinant 10-kilodalton immunodominant region of the BP26 protein of Brucella abortus for specific diagnosis of bovine brucellosis. Clin Vaccine Immunol. 2011;18:1760–4.  https://doi.org/10.1128/CVI.05159-11.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang DB, et al. Detection of B. anthracis spores and vegetative cells with the same monoclonal antibodies. PLoS One. 2009a;4:e7810.  https://doi.org/10.1371/journal.pone.0007810.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    McHugh S, Burnell S, Shenhav S, Svarovsky S, Manneh V. Novel time resolved fluorescence platform for near patient diagnostics. Oak Ridge Conference, Capturing Innovation: The Impact of Emerging Diagnostic Technologies; 2010 April 22–23; San Jose, CA.Google Scholar
  23. 23.
    Peruski AH, Johnson LH III, Peruski LF Jr. Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. J Immunol Methods. 2002;263:35–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Tian W, Finehout E, editors. Microfluidics for biological applications. New York: Springer; 2009.  https://doi.org/10.1007/978-0-387-09480-9.CrossRefGoogle Scholar
  25. 25.
    Mohan R, Mach KE, Bercovici M, Pan Y, Dhulipala L, Wong PK, Liao JC. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis. PLoS One. 2011;6:e26846.  https://doi.org/10.1371/journal.pone.0026846.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sin MLY, Mach KE, Wong PK, Liao JC. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn. 2014;14:225–44.  https://doi.org/10.1586/14737159.2014.888313.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Deng S, Lei J, Cheng L, Zhang Y, Ju H. Amplified electrochemiluminescence of quantum dots by electrochemically reduced graphene oxide for nanobiosensing of acetylcholine. Biosens Bioelectron. 2011;26:4552–8.  https://doi.org/10.1016/j.bios.2011.05.023.CrossRefPubMedGoogle Scholar
  28. 28.
    Hunt HK, Armani AM. Label-free biological and chemical sensors. Nanoscale. 2010;2:1544–59.  https://doi.org/10.1039/c0nr00201a.CrossRefPubMedGoogle Scholar
  29. 29.
    Rapp BE, Gruhl FJ, Lange K. Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem. 2010;398:2403–12.  https://doi.org/10.1007/s00216-010-3906-2.CrossRefPubMedGoogle Scholar
  30. 30.
    Wojciechowski J, Danley D, Cooper J, Yazvenko N, Taitt CR. Multiplexed electrochemical detection of Yersinia pestis and staphylococcal enterotoxin B using an antibody microarray. Sensors (Basel). 2010;10:3351–62.  https://doi.org/10.3390/s100403351.CrossRefGoogle Scholar
  31. 31.
    Pohanka M, Hubalek M, Neubauerova V, Macela A, Martin F, Bandouchova H, Pikula J. Current and tularensis detection: a review. Vet Med. 2008;53:585–94.CrossRefGoogle Scholar
  32. 32.
    Pohanka M, Pavlis O, Skladal P. Diagnosis of tularemia using piezoelectric biosensor technology. Talanta. 2007;71:981–5.  https://doi.org/10.1016/j.talanta.2006.05.074.CrossRefPubMedGoogle Scholar
  33. 33.
    Yu JS, et al. Detection of Ebola virus envelope using monoclonal and polyclonal antibodies in ELISA, surface plasmon resonance and a quartz crystal microbalance immunosensor. J Virol Methods. 2006;137:219–28.  https://doi.org/10.1016/j.jviromet.2006.06.014.CrossRefPubMedGoogle Scholar
  34. 34.
    Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P, Collins JJ. Paper-based synthetic gene networks. Cell. 2014;159:940–54.  https://doi.org/10.1016/j.cell.2014.10.004.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    PathSensors. Introducing CANARY – cutting edge pathogen detection. PathSensors. 2018. https://pathsensors.com/technology/about-canary/. Accessed 20 Jun 2018.
  36. 36.
    Rider TH, et al. A B cell-based sensor for rapid identification of pathogens. Science. 2003;301:213–5.  https://doi.org/10.1126/science.1084920.CrossRefPubMedGoogle Scholar
  37. 37.
    Vidic J, Manzano M, Chang C-M, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. 2018;48:11.  https://doi.org/10.1186/s13567-017-0418-5.CrossRefGoogle Scholar
  38. 38.
    Narayanan J, Sharma MK, Ponmariappan S, Sarita SM, Upadhyay S. Electrochemical immunosensor for botulinum neurotoxin type-E using covalently ordered graphene nanosheets modified electrodes and gold nanoparticles-enzyme conjugate. Biosens Bioelectron. 2015;69:249–56.  https://doi.org/10.1016/j.bios.2015.02.039.CrossRefPubMedGoogle Scholar
  39. 39.
    Wu H, Zuo Y, Cui C, Yang W, Ma H, Wang X. Rapid quantitative detection of Brucella melitensis by a label-free impedance immunosensor based on a gold nanoparticle-modified screen-printed carbon electrode. Sensors. 2013;13:8551–63.  https://doi.org/10.3390/s130708551.CrossRefPubMedGoogle Scholar
  40. 40.
    Sharma MK, Narayanan J, Pardasani D, Srivastava DN, Upadhyay S, Goel AK. Ultrasensitive electrochemical immunoassay for surface array protein, a Bacillus anthracis biomarker using Au-Pd nanocrystals loaded on boron-nitride nanosheets as catalytic labels. Biosens Bioelectron. 2016;80:442–9.  https://doi.org/10.1016/j.bios.2016.02.008.CrossRefPubMedGoogle Scholar
  41. 41.
    Gupta G, Kumar A, Boopathi M, Thavaselvam D, Singh B, Vijayaraghavan R. Rapid and quantitative detection of biological warfare agent Brucella abortus CSP-31 by surface plasmon resonance. India-Japan Workshop on Biomolecular Electronics and Organic Nanotechnology for Environment Preservation; 2009; New Delhi, India.Google Scholar
  42. 42.
    Huynh HT, Gotthard G, Terras J, Aboudharam G, Drancourt M, Chabriere E. Surface plasmon resonance imaging of pathogens: the Yersinia pestis paradigm. BMC Res Notes. 2015;8:259.  https://doi.org/10.1186/s13104-015-1236-3.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tomar A, Gupta G, Singh MK, Boopathi M, Singh B, Dhaked RK. Surface plasmon resonance sensing of biological warfare agent botulinum neurotoxin A. J Bioterror Biodef. 2016;7:142.  https://doi.org/10.4172/2157-2526.1000142.CrossRefGoogle Scholar
  44. 44.
    Pohanka M, Skladal P. Piezoelectric immunosensor for Francisella tularensis detection using immunoglobulin M in a limiting dilution. Anal Lett. 2005;38:411–22.  https://doi.org/10.1081/Al-200047764.CrossRefGoogle Scholar
  45. 45.
    Salmain M, Ghasemi M, Boujday S, Pradier CM. Elaboration of a reusable immunosensor for the detection of staphylococcal enterotoxin A (SEA) in milk with a quartz crystal microbalance. Sens Actuators B Chem. 2012;173:148–56.  https://doi.org/10.1016/j.snb.2012.06.052.CrossRefGoogle Scholar
  46. 46.
    Vunsh R, Rosner A, Stein A. The use of the polymerase chain-reaction (PCR) for the detection of bean yellow mosaic-virus in gladiolus. Ann Appl Biol. 1990;117:561–9.  https://doi.org/10.1111/j.1744-7348.1990.tb04822.x.CrossRefGoogle Scholar
  47. 47.
    Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20:660–94.  https://doi.org/10.1128/CMR.00023-07.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mahony JB. Nucleic acid amplification-based diagnosis of respiratory virus infections. Expert Rev Anti-Infect Ther. 2010;8:1273–92.  https://doi.org/10.1586/eri.10.121.CrossRefPubMedGoogle Scholar
  49. 49.
    Ntziora F, et al. Ultrasensitive amplification refractory mutation system real-time PCR (ARMS RT-PCR) assay for detection of minority hepatitis B virus-resistant strains in the era of personalized medicine. J Clin Microbiol. 2013;51:2893–900.  https://doi.org/10.1128/JCM.00936-13.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Valle L, et al. Performance testing of two new one-step real time PCR assays for detection of human influenza and avian influenza viruses isolated in humans and respiratory syncytial virus. J Prev Med Hyg. 2006;47:127–33.PubMedGoogle Scholar
  51. 51.
    Zhang WD, Evans DH. Detection and identification of human influenza viruses by the polymerase chain reaction. J Virol Methods. 1991;33:165–89.CrossRefPubMedGoogle Scholar
  52. 52.
    Boonham N, Kreuze J, Winter S, van der Vlugt R, Bergervoet J, Tomlinson J, Mumford R. Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 2014;186:20–31.  https://doi.org/10.1016/j.virusres.2013.12.007.CrossRefPubMedGoogle Scholar
  53. 53.
    Huang Y, Wei H, Wang Y, Shi Z, Raoul H, Yuan Z. Rapid detection of filoviruses by real-time TaqMan polymerase chain reaction assays. Virol Sin. 2012;27:273–7.  https://doi.org/10.1007/s12250-012-3252-y.CrossRefPubMedGoogle Scholar
  54. 54.
    Trombley AR, et al. Comprehensive panel of real-time TaqMan polymerase chain reaction assays for detection and absolute quantification of filoviruses, arenaviruses, and New World hantaviruses. Am J Trop Med Hyg. 2010;82:954–60.  https://doi.org/10.4269/ajtmh.2010.09-0636.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kurth A, et al. Novel paramyxoviruses in free-ranging European bats. PLoS One. 2012;7:e38688.  https://doi.org/10.1371/journal.pone.0038688.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wilkinson DA, et al. Identification of novel paramyxoviruses in insectivorous bats of the Southwest Indian Ocean. Virus Res. 2012;170:159–63.  https://doi.org/10.1016/j.virusres.2012.08.022.CrossRefPubMedGoogle Scholar
  57. 57.
    Lipkin WI, Anthony SJ. Virus hunting. Virology. 2015;479–480:194–9.  https://doi.org/10.1016/j.virol.2015.02.006.CrossRefPubMedGoogle Scholar
  58. 58.
    Zambon M, Hays J, Webster A, Newman R, Keene O. Diagnosis of influenza in the community: relationship of clinical diagnosis to confirmed virological, serologic, or molecular detection of influenza. Arch Intern Med. 2001;161:2116–22.CrossRefPubMedGoogle Scholar
  59. 59.
    Mahony JB. Detection of respiratory viruses by molecular methods. Clin Microbiol Rev. 2008;21:716–47.  https://doi.org/10.1128/CMR.00037-07.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ellis JS, Fleming DM, Zambon MC. Multiplex reverse transcription-PCR for surveillance of influenza A and B viruses in England and Wales in 1995 and 1996. J Clin Microbiol. 1997;35:2076–82.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Thornton SA, Sherman SS, Farkas T, Zhong W, Torres P, Jiang X. Gastroenteritis in US Marines during Operation Iraqi Freedom. Clin Infect Dis. 2005;40:519–25.  https://doi.org/10.1086/427501.CrossRefPubMedGoogle Scholar
  62. 62.
    Drosten C, Gottig S, Schilling S, Asper M, Panning M, Schmitz H, Gunther S. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40:2323–30.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yang Y, Bai L, Hu KX, Yang ZH, Hu JP, Wang J. Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus. Chin J Exp Clin Virol. 2012;26:313–5.Google Scholar
  64. 64.
    Abd El Wahed A, Patel P, Heidenreich D, Hufert FT, Weidmann M. Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr. 2013:5.  https://doi.org/10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364.
  65. 65.
    Nguyen TT, Van Giau V, Vo TK. Multiplex PCR for simultaneous identification of E. coli O157:H7, Salmonella spp. and L. monocytogenes in food. 3 Biotech. 2016;6:205.  https://doi.org/10.1007/s13205-016-0523-6.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Metzgar D, et al. The IRIDICA BAC BSI assay: rapid, sensitive and culture-independent identification of bacteria and Candida in blood. PLoS One. 2016;11:e0158186.  https://doi.org/10.1371/journal.pone.0158186.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Pillet S, et al. Comparative evaluation of six commercialized multiplex PCR kits for the diagnosis of respiratory infections. PLoS One. 2013;8:e72174.  https://doi.org/10.1371/journal.pone.0072174.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Legoff J, Kara R, Moulin F, Si-Mohamed A, Krivine A, Belec L, Lebon P. Evaluation of the one-step multiplex real-time reverse transcription-PCR ProFlu-1 assay for detection of influenza A and influenza B viruses and respiratory syncytial viruses in children. J Clin Microbiol. 2008;46:789–91.  https://doi.org/10.1128/jcm.00959-07.CrossRefPubMedGoogle Scholar
  69. 69.
    Banada PP, et al. Rapid detection of Bacillus anthracis bloodstream infections by use of a novel assay in the GeneXpert system. J Clin Microbiol. 2017;55:2964–71.  https://doi.org/10.1128/jcm.00466-17.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Boehme CC, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363:1005–15.  https://doi.org/10.1056/NEJMoa0907847.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Boehme CC, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet (London, England). 2011;377:1495–505.  https://doi.org/10.1016/s0140-6736(11)60438-8.CrossRefGoogle Scholar
  72. 72.
    Lawn SD, et al. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect Dis. 2013;13:349–61.  https://doi.org/10.1016/S1473-3099(13)70008-2.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lawn SD, Nicol MP. Xpert(R) MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol. 2011;6:1067–82.  https://doi.org/10.2217/fmb.11.84.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Rossney AS, Herra CM, Brennan GI, Morgan PM, O’Connell B. Evaluation of the Xpert methicillin-resistant Staphylococcus aureus (MRSA) assay using the GeneXpert real-time PCR platform for rapid detection of MRSA from screening specimens. J Clin Microbiol. 2008;46:3285–90.  https://doi.org/10.1128/JCM.02487-07.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Jansen van Vuren P, et al. Comparative evaluation of the diagnostic performance of the prototype cepheid GeneXpert Ebola Assay. J Clin Microbiol. 2016;54:359–67.  https://doi.org/10.1128/jcm.02724-15.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Semper AE, et al. Performance of the GeneXpert Ebola assay for diagnosis of ebola virus disease in sierra leone: a field evaluation study. PLoS Med. 2016;13:e1001980.  https://doi.org/10.1371/journal.pmed.1001980.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Van den Bergh R, et al. Feasibility of Xpert Ebola assay in Medecins Sans Frontieres Ebola program, Guinea. Emerg Infect Dis. 2016;22:210–6.  https://doi.org/10.3201/eid2202.151238.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Jang YR, et al. Molecular detection of Coxiella burnetii from the formalin-fixed tissues of Q fever patients with acute hepatitis. PLoS One. 2017;12:e0180237.  https://doi.org/10.1371/journal.pone.0180237.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Rolain JM, Raoult D. Molecular detection of Coxiella burnetii in blood and sera during Q fever. QJM. 2005;98:615–7.; author reply 617–620.  https://doi.org/10.1093/qjmed/hci099.CrossRefPubMedGoogle Scholar
  80. 80.
    Pradeep J, Stephen S, Ambroise S, Gunasekaran D. Diagnosis of acute Q fever by detection of Coxiella burnetii DNA using real-time PCR, employing a commercial genesig easy kit. J Clin Diagn Res. 2017;11:Dc10–dc13.  https://doi.org/10.7860/jcdr/2017/31005.10606.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Espy MJ, Cockerill IF, Meyer RF, Bowen MD, Poland GA, Hadfield TL, Smith TF. Detection of smallpox virus DNA by LightCycler PCR. J Clin Microbiol. 2002;40:1985–8.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ecker DJ, et al. New technology for rapid molecular diagnosis of bloodstream infections. Expert Rev Mol Diagn. 2010;10:399–415.  https://doi.org/10.1586/erm.10.24.CrossRefPubMedGoogle Scholar
  83. 83.
    Sampath R, et al. Comprehensive biothreat cluster identification by PCR/electrospray-ionization mass spectrometry. PLoS One. 2012;7:e36528.  https://doi.org/10.1371/journal.pone.0036528.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Barzon L, Lavezzo E, Militello V, Toppo S, Palu G. Applications of next-generation sequencing technologies to diagnostic virology. Int J Mol Sci. 2011;12:7861–84.  https://doi.org/10.3390/ijms12117861.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Beggs ML, Stevanova R, Eisenach KD. Species identification of Mycobacterium avium complex isolates by a variety of molecular techniques. J Clin Microbiol. 2000;38:508–12.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Briese T, et al. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 2009;5:e1000455.  https://doi.org/10.1371/journal.ppat.1000455.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Highlander SK, et al. Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus. BMC Microbiol. 2007;7:99.  https://doi.org/10.1186/1471-2180-7-99.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Hoffmann C, Minkah N, Leipzig J, Wang G, Arens MQ, Tebas P, Bushman FD. DNA bar coding and pyrosequencing to identify rare HIV drug resistance mutations. Nucleic Acids Res. 2007;35:e91.  https://doi.org/10.1093/nar/gkm435.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Menegazzi P, Reho E, Ulivi M, Varnier OE, Lillo FB, Tagliaferro L. Rapid and accurate quantification of different HCV genotypes by LightCycler Real Time PCR and direct sequencing of HCV amplicons. New Microbiol. 2008;31:181–7.PubMedGoogle Scholar
  90. 90.
    Wang C, Mitsuya Y, Gharizadeh B, Ronaghi M, Shafer RW. Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. Genome Res. 2007;17:1195–201.  https://doi.org/10.1101/gr.6468307.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Lam HY, et al. Performance comparison of whole-genome sequencing platforms. Nat Biotechnol. 2011;30:78–82.  https://doi.org/10.1038/nbt.2065.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009c;10:57–63.  https://doi.org/10.1038/nrg2484.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kuroda M, Sekizuka T, Shinya F, Takeuchi F, Kanno T, Sata T, Asano S. Detection of a possible bioterrorism agent, Francisella sp., in a clinical specimen by use of next-generation direct DNA sequencing. J Clin Microbiol. 2012;50:1810–2.  https://doi.org/10.1128/JCM.06715-11.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Margulies M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376.  https://doi.org/10.1038/nature03959.. https://www.nature.com/articles/nature03959#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Pearson BM, Gaskin DJ, Segers RP, Wells JM, Nuijten PJ, van Vliet AH. The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J Bacteriol. 2007;189:8402–3.  https://doi.org/10.1128/JB.01404-07.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Illumina. Sequencing platform comparison tool. Illumina. 2018. www.illumina.com/systems/sequencing-platforms/comparison-tool.html. Accessed 20 Jun 2018.
  97. 97.
    Be NA, et al. Detection of Bacillus anthracis DNA in complex soil and air samples using next-generation sequencing. PLoS One. 2013;8:e73455.  https://doi.org/10.1371/journal.pone.0073455.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ramalingam NSP. Concepts and techniques in genomics and proteomics. Woodhead Publishing Series in Biomedicine. 2011.Google Scholar
  99. 99.
    Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26:1135–45.  https://doi.org/10.1038/nbt1486.CrossRefPubMedGoogle Scholar
  100. 100.
    Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55:641–58.  https://doi.org/10.1373/clinchem.2008.112789.CrossRefPubMedGoogle Scholar
  101. 101.
    Cummings CA, et al. Accurate, rapid and high-throughput detection of strain-specific polymorphisms in Bacillus anthracis and Yersinia pestis by next-generation sequencing. Investig Genet. 2010;1:5.  https://doi.org/10.1186/2041-2223-1-5.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30:434–9.  https://doi.org/10.1038/nbt.2198.CrossRefPubMedGoogle Scholar
  103. 103.
    Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100.  https://doi.org/10.1126/science.1152586.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Feng H, et al. Human transcriptome subtraction by using short sequence tags to search for tumor viruses in conjunctival carcinoma. J Virol. 2007;81:11332–40.  https://doi.org/10.1128/JVI.00875-07.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Grard G, et al. A novel rhabdovirus associated with acute hemorrhagic fever in central Africa. PLoS Pathog. 2012;8:e1002924.  https://doi.org/10.1371/journal.ppat.1002924.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Tong YG, et al. Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone. Nature. 2015;524:93–6.  https://doi.org/10.1038/nature14490.CrossRefPubMedGoogle Scholar
  107. 107.
    Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA Microarray. Science. 1995;270:467–70.CrossRefPubMedGoogle Scholar
  108. 108.
    Hughes TR, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol. 2001;19:342–7.  https://doi.org/10.1038/86730.CrossRefPubMedGoogle Scholar
  109. 109.
    Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A. 1994;91:5022–6.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Leski TA, et al. Testing and validation of high density resequencing microarray for broad range biothreat agents detection. PLoS One. 2009;4:e6569.  https://doi.org/10.1371/journal.pone.0006569.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A. 2002;99:15687–92.  https://doi.org/10.1073/pnas.242579699.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Wang D, et al. Viral discovery and sequence recovery using DNA microarrays. PLoS Biol. 2003;1:E2.  https://doi.org/10.1371/journal.pbio.0000002.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Chou C-C, et al. Design of microarray probes for virus identification and detection of emerging viruses at the genus level. BMC Bioinf. 2006;7:232.  https://doi.org/10.1186/1471-2105-7-232.CrossRefGoogle Scholar
  114. 114.
    Chiu CY, et al. Utility of DNA microarrays for detection of viruses in acute respiratory tract infections in children. J Pediatr. 2008;153:76–83.  https://doi.org/10.1016/j.jpeds.2007.12.035.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Palacios G, et al. Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis. 2007;13:73–81.  https://doi.org/10.3201/eid1301.060837.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Boriskin YS, Rice PS, Stabler RA, Hinds J, Al-Ghusein H, Vass K, Butcher PD. DNA microarrays for virus detection in cases of central nervous system infection. J Clin Microbiol. 2004;42:5811–8.  https://doi.org/10.1128/jcm.42.12.5811-5818.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Liu RH, Lodes MJ, Nguyen T, Siuda T, Slota M, Fuji HS, McShea A. Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing. Anal Chem. 2006;78:4184–93.  https://doi.org/10.1021/ac060450v.CrossRefPubMedGoogle Scholar
  118. 118.
    Myers KM, Gaba J, Al-Khaldi SF. Molecular identification of Yersinia enterocolitica isolated from pasteurized whole milk using DNA microarray chip hybridization. Mol Cell Probes. 2006;20:71–80.  https://doi.org/10.1016/j.mcp.2005.09.006.CrossRefPubMedGoogle Scholar
  119. 119.
    Bennett BD. Blood glucose determination: point of care testing. South Med J. 1997;90:678–80.CrossRefPubMedGoogle Scholar
  120. 120.
    Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350:91–2.  https://doi.org/10.1038/350091a0.CrossRefPubMedGoogle Scholar
  121. 121.
    Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci U S A. 1990;87:7797.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Greer S, Alexander GJ. Viral Serology and Detection. Baillieres Clin Gastroenterol. 1995;9:689–721.CrossRefPubMedGoogle Scholar
  123. 123.
    Niemz A, Ferguson TM, Boyle DS. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 2011;29:240–50.  https://doi.org/10.1016/j.tibtech.2011.01.007.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Troger V, Niemann K. Isothermal amplification and quantification of nucleic acids and its use in microsystems. J Nanomed Nanotechnol. 2015;6:1–19.  https://doi.org/10.4172/2157-7439.CrossRefGoogle Scholar
  125. 125.
    Hall MJ, Wharam SD, Weston A, Cardy DL, Wilson WH. Use of signal-mediated amplification of RNA technology (SMART) to detect marine cyanophage DNA BioTechniques. 2002;32:604–606, 608–611.Google Scholar
  126. 126.
    McCalla SE, Ong C, Sarma A, Opal SM, Artenstein AW, Tripathi A. A simple method for amplifying RNA targets (SMART). J Mol Diagn. 2012;14:328–35.  https://doi.org/10.1016/j.jmoldx.2012.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Wharam SD, et al. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res. 2001;29:e54.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Bonney LC, Watson RJ, Afrough B, Mullojonova M, Dzhuraeva V, Tishkova F, Hewson R. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection. PLoS Negl Trop Dis. 2017;11:e0006013.  https://doi.org/10.1371/journal.pntd.0006013.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Mayboroda O, et al. Isothermal solid-phase amplification system for detection of Yersinia pestis. Anal Bioanal Chem. 2016;408:671–6.  https://doi.org/10.1007/s00216-015-9177-1.CrossRefPubMedGoogle Scholar
  130. 130.
    Koo B, et al. A rapid bio-optical sensor for diagnosing Q fever in clinical specimens. J Biophotonics. 2018;11:e201700167.  https://doi.org/10.1002/jbio.201700167.CrossRefPubMedGoogle Scholar
  131. 131.
    Euler M, et al. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol. 2013;51:1110–7.  https://doi.org/10.1128/jcm.02704-12.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5:795–800.  https://doi.org/10.1038/sj.embor.7400200.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    An L, Tang W, Ranalli TA, Kim HJ, Wytiaz J, Kong H. Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem. 2005;280:28952–8.  https://doi.org/10.1074/jbc.M503096200.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Goldmeyer J, Kong H, Tang W. Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection. J Mol Diagn. 2007;9:639–44.  https://doi.org/10.2353/jmoldx.2007.070012.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Kivlehan F, Mavre F, Talini L, Limoges B, Marchal D. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids. Analyst. 2011;136:3635–42.  https://doi.org/10.1039/c1an15289k.CrossRefPubMedGoogle Scholar
  136. 136.
    Torres-Chavolla E, Alocilja EC. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron. 2011;26:4614–8.  https://doi.org/10.1016/j.bios.2011.04.055.CrossRefPubMedGoogle Scholar
  137. 137.
    Zhang Y, Park S, Liu K, Tsuan J, Yang S, Wang TH. A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip. 2011;11:398–406.  https://doi.org/10.1039/c0lc00296h.CrossRefPubMedGoogle Scholar
  138. 138.
    Andresen D, von Nickisch-Rosenegk M, Bier FF. Helicase dependent OnChip-amplification and its use in multiplex pathogen detection Clinica chimica acta. Int J Clin Chem. 2009;403:244–8.  https://doi.org/10.1016/j.cca.2009.03.021.CrossRefGoogle Scholar
  139. 139.
    Tong Y, Tang W, Kim HJ, Pan X, Ranalli T, Kong H. Development of isothermal TaqMan assays for detection of biothreat organisms. BioTechniques. 2008;45:543–57.  https://doi.org/10.2144/000112959.CrossRefPubMedGoogle Scholar
  140. 140.
    Motre A, Kong R, Li Y. Improving isothermal DNA amplification speed for the rapid detection of Mycobacterium tuberculosis. J Microbiol Methods. 2011;84:343–5.  https://doi.org/10.1016/j.mimet.2010.12.002.CrossRefPubMedGoogle Scholar
  141. 141.
    Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem. 1989;264:8935–40.PubMedGoogle Scholar
  142. 142.
    Beyer S, Nickels P, Simmel FC. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Lett. 2005;5:719–22.  https://doi.org/10.1021/nl050155a.CrossRefPubMedGoogle Scholar
  143. 143.
    Schweitzer B, Kingsmore S. Combining nucleic acid amplification and detection. Curr Opin Biotechnol. 2001;12:21–7.CrossRefPubMedGoogle Scholar
  144. 144.
    Murakami T, Sumaoka J, Komiyama M. Sensitive isothermal detection of nucleic-acid sequence by primer generation–rolling circle amplification. Nucleic Acids Res. 2009;37:e19.  https://doi.org/10.1093/nar/gkn1014.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Sato K, et al. Microbead-based rolling circle amplification in a microchip for sensitive DNA detection. Lab Chip. 2010;10:1262–6.  https://doi.org/10.1039/b927460j.CrossRefPubMedGoogle Scholar
  146. 146.
    Xiang Y, Zhu X, Huang Q, Zheng J, Fu W. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Biosens Bioelectron. 2015;66:512–9.  https://doi.org/10.1016/j.bios.2014.11.021.CrossRefPubMedGoogle Scholar
  147. 147.
    Wang B, et al. Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J Clin Microbiol. 2005;43:2339–44.  https://doi.org/10.1128/jcm.43.5.2339-2344.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Hamidi SV, Ghourchian H. Colorimetric monitoring of rolling circle amplification for detection of H5N1 influenza virus using metal indicator. Biosens Bioelectron. 2015;72:121–6.  https://doi.org/10.1016/j.bios.2015.04.078.CrossRefPubMedGoogle Scholar
  149. 149.
    Hamidi SV, Ghourchian H, Tavoosidana G. Real-time detection of H5N1 influenza virus through hyperbranched rolling circle amplification. The Analyst. 2015;140:1502–9.  https://doi.org/10.1039/c4an01954g.CrossRefPubMedGoogle Scholar
  150. 150.
    Mahmoudian L, Kaji N, Tokeshi M, Nilsson M, Baba Y. Rolling circle amplification and circle-to-circle amplification of a specific gene integrated with electrophoretic analysis on a single chip. Anal Chem. 2008a;80:2483–90.  https://doi.org/10.1021/ac702289j.CrossRefPubMedGoogle Scholar
  151. 151.
    Mahmoudian L, et al. Microchip electrophoresis for specific gene detection of the pathogenic bacteria V. cholerae by circle-to-circle amplification. Anal Sci. 2008b;24:327–32.CrossRefPubMedGoogle Scholar
  152. 152.
    Gomez A, Miller NS, Smolina I. Visual detection of bacterial pathogens via PNA-based padlock probe assembly and isothermal amplification of DNAzymes. Anal Chem. 2014;86:11992–8.  https://doi.org/10.1021/ac5018748.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:E63.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Hong TC, et al. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J Clin Microbiol. 2004;42:1956–61.CrossRefPubMedGoogle Scholar
  155. 155.
    Parida M, Posadas G, Inoue S, Hasebe F, Morita K. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J Clin Microbiol. 2004;42:257–63.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun. 2001;289:150–4.  https://doi.org/10.1006/bbrc.2001.5921.CrossRefPubMedGoogle Scholar
  157. 157.
    Mori Y, Kitao M, Tomita N, Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods. 2004;59:145–57.  https://doi.org/10.1016/j.jbbm.2003.12.005.CrossRefPubMedGoogle Scholar
  158. 158.
    Soliman H, El-Matbouli M. An inexpensive and rapid diagnostic method of Koi Herpesvirus (KHV) infection by loop-mediated isothermal amplification. Virol J. 2005;2:83.  https://doi.org/10.1186/1743-422X-2-83.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Yoda T, Suzuki Y, Yamazaki K, Sakon N, Kanki M, Aoyama I, Tsukamoto T. Evaluation and application of reverse transcription loop-mediated isothermal amplification for detection of noroviruses. J Med Virol. 2007;79:326–34.  https://doi.org/10.1002/jmv.20802.CrossRefPubMedGoogle Scholar
  160. 160.
    Fang X, Liu Y, Kong J, Jiang X. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem. 2010;82:3002–6.  https://doi.org/10.1021/ac1000652.CrossRefPubMedGoogle Scholar
  161. 161.
    Wang CH, Lien KY, Wu JJ, Lee GB. A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification. Lab Chip. 2011;11:1521–31.  https://doi.org/10.1039/c0lc00430h.CrossRefPubMedGoogle Scholar
  162. 162.
    Ahmed MU, Nahar S, Safavieh M, Zourob M. Real-time electrochemical detection of pathogen DNA using electrostatic interaction of a redox probe. Analyst. 2013;138:907–15.  https://doi.org/10.1039/c2an36153a.CrossRefPubMedGoogle Scholar
  163. 163.
    He Y, Zeng K, Zhang S, Gurung AS, Baloda M, Zhang X, Liu G. Visual detection of gene mutations based on isothermal strand-displacement polymerase reaction and lateral flow strip. Biosens Bioelectron. 2012;31:310–5.  https://doi.org/10.1016/j.bios.2011.10.037.CrossRefPubMedGoogle Scholar
  164. 164.
    Yang JM, et al. An integrated, stacked microlaboratory for biological agent detection with DNA and immunoassays. Biosens Bioelectron. 2002;17:605–18.CrossRefPubMedGoogle Scholar
  165. 165.
    Westin L, Xu X, Miller C, Wang L, Edman CF, Nerenberg M. Anchored multiplex amplification on a microelectronic chip array. Nat Biotechnol. 2000;18:199–204.  https://doi.org/10.1038/72658.CrossRefPubMedGoogle Scholar
  166. 166.
    Ong SE, Zhang S, Du H, Fu Y. Fundamental principles and applications of microfluidic systems. Front Biosci. 2008;13:2757–73.CrossRefPubMedGoogle Scholar
  167. 167.
    Shelton DR, Karns JS. Quantitative detection of Escherichia coli O157 in surface waters by using immunomagnetic electrochemiluminescence. Appl Environ Microbiol. 2001;67:2908–15.  https://doi.org/10.1128/AEM.67.7.2908-2915.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Yu H, Bruno JG. Immunomagnetic-electrochemiluminescent detection of Escherichia coli O157 and Salmonella typhimurium in foods and environmental water samples. Appl Environ Microbiol. 1996;62:587–92.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Gulliksen A, Solli L, Karlsen F, Rogne H, Hovig E, Nordstrom T, Sirevag R. Real-time nucleic acid sequence-based amplification in nanoliter volumes. Anal Chem. 2004;76:9–14.  https://doi.org/10.1021/ac034779h.CrossRefPubMedGoogle Scholar
  170. 170.
    Gulliksen A, et al. Parallel nanoliter detection of cancer markers using polymer microchips. Lab Chip. 2005;5:416–20.  https://doi.org/10.1039/b415525d.CrossRefPubMedGoogle Scholar
  171. 171.
    Jung JH, Park BH, Oh SJ, Choi G, Seo TS. Integration of reverse transcriptase loop-mediated isothermal amplification with an immunochromatographic strip on a centrifugal microdevice for influenza A virus identification. Lab Chip. 2015;15:718–25.  https://doi.org/10.1039/c4lc01033g.CrossRefPubMedGoogle Scholar
  172. 172.
    Gorkin R, et al. Centrifugal microfluidics for biomedical applications. Lab Chip. 2010;10:1758–73.  https://doi.org/10.1039/B924109D.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Meghana Rastogi
    • 1
  • Sunit K. Singh
    • 1
  1. 1.Molecular Biology UnitInstitute of Medical Sciences, Banaras Hindu University (BHU)VaranasiIndia

Personalised recommendations