Gambling Disorder and Substance-Related Disorders: Similarities and Differences

  • Anna E. GoudriaanEmail author
  • Wim van den Brink
  • Ruth J. van Holst


Gambling disorder (GD) has important similarities with substance use disorders (SUDs) in terms of both diagnostic criteria and underlying mechanisms of action. With regard to diagnostic criteria, only craving is not present as a formal criterion in DSM-5 GD, and chasing losses is not present in SUDs. All other major diagnostic criteria such as loss of control over gambling, tolerance, withdrawal, and negative consequences due to gambling overlap with those of SUD. With regard to underlying mechanisms and vulnerability factors, higher impulsivity, abnormalities in decision-making, deficient executive functions, and related fronto-striatal brain circuitry abnormalities are related to the development and course of both SUD and GD. However, there are also differences between GD and SUD. In gambling, cognitive factors such as risk-taking and decision-making are intrinsically related to the addictive behavior itself, whereas in SUD these effects can also be associated with the pharmacological effect or the neurotoxicity related to (chronic) substance use. Moreover misperceptions with regard to gambling, the experience and interpretation of near misses, and the processing of (potential) rewards and losses influence the experience of gambling, which is not true for SUD. Importantly, these aspects also differ between disordered gamblers and non-problematic gamblers and are thus unique for GD and consitute a risk for relapse. Both shared and unique mechanisms are relevant as targets for the treatment of GD. This chapter concludes with a discussion on novel treatment methods that target some of the working mechanisms shared by GD and SUDs.


  1. 1.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.CrossRefGoogle Scholar
  2. 2.
    Blaszczynski A, Nower L. A pathways model of problem and pathological gambling. Addiction. 2002;97(5):487–99.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sharpe L. A reformulated cognitive-behavioral model of problem gambling. A biopsychosocial perspective. Clin Psychol Rev. 2002;22(1):1–25.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatr. 2002;159(10):1642–52.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Raylu N, Oei TP. Role of culture in gambling and problem gambling. Clin Psychol Rev. 2004;23(8):1087–114.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Slutske WS, Eisen S, True WR, Lyons MJ, Goldberg J, Tsuang M. Common genetic vulnerability for pathological gambling and alcohol dependence in men. Arch Gen Psychiatry. 2000;57(7):666–73.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Slutske WS, Moffitt TE, Poulton R, Caspi A. Undercontrolled temperament at age 3 predicts disordered gambling at age 32: a longitudinal study of a complete birth cohort. Psychol Sci. 2012;23(5):510–6. 0956797611429708 [pii].Google Scholar
  8. 8.
    Vitaro F, Arseneault L, Tremblay RE. Dispositional predictors of problem gambling in male adolescents. Am J Psychiatr. 1997;154(12):1769–70.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vitaro F, Arseneault L, Tremblay RE. Impulsivity predicts problem gambling in low SES adolescent males. Addiction. 1999;94(4):565–75.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Alvarez-Moya EM, Ochoa C, Jimenez-Murcia S, Aymami MN, Gomez-Pena M, Fernandez-Aranda F, et al. Effect of executive functioning, decision-making and self-reported impulsivity on the treatment outcome of pathologic gambling. J Psychiatry Neurosci. 2011;36(3):165–75.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. The role of self-reported impulsivity and reward sensitivity versus neurocognitive measures of disinhibition and decision-making in the prediction of relapse in pathological gamblers. Psychol Med. 2008;38(1):41–50.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Psychophysiological determinants and concomitants of deficient decision making in pathological gamblers. Drug Alcohol Depend. 2006;84(3):231–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Romanczuk-Seiferth N, Koehler S, Dreesen C, Wüstenberg T, Heinz A. Pathological gambling and alcohol dependence: neural disturbances in reward and loss avoidance processing. Addict Biol. 2015;20:557–69.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    de Ruiter MB, Veltman DJ, Goudriaan AE, Oosterlaan J, Sjoerds Z, van den Brink W. Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology. 2009;34(4):1027–38. npp2008175 [pii].Google Scholar
  15. 15.
    Clark L, Lawrence AJ, Astley-Jones F, Gray N. Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron. 2009;61(3):481–90. S0896-6273(09)00037-3 [pii]Google Scholar
  16. 16.
    Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995;51(6):768–74.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Baumann AA, Odum AL. Impulsivity, risk taking, and timing. Behav Process. 2012;90(3):408–14.CrossRefGoogle Scholar
  18. 18.
    Broos N, Schmaal L, Wiskerke J, Kostelijk L, Lam T, Stoop N, et al. The relationship between impulsive choice and impulsive action: a cross-species translational study. PLoS One. 2012;7(5):e36781.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jentsch JD, Ashenhurst JR, Cervantes MC, Groman SM, James AS, Pennington ZT. Dissecting impulsivity and its relationships to drug addictions. Ann N Y Acad Sci. 2014;1327:1–26.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Whiteside SP, Lynam DR. Understanding the role of impulsivity and externalizing psychopathology in alcohol abuse: application of the UPPS impulsive behavior scale. Exp Clin Psychopharmacol. 2003;11(3):210–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wilbertz T, Deserno L, Horstmann A, Neumann J, Villringer A, Heinze HJ, et al. Response inhibition and its relation to multidimensional impulsivity. Neuroimage. 2014;103:241–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Aichert DS, Wostmann NM, Costa A, Macare C, Wenig JR, Moller HJ, et al. Associations between trait impulsivity and prepotent response inhibition. J Clin Exp Neuropsychol. 2012;34(10):1016–32.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fuentes D, Tavares H, Artes R, Gorenstein C. Self-reported and neuropsychological measures of impulsivity in pathological gambling. J Int Neuropsychol Soc. 2006;12(6):907–12. S1355617706061091 [pii].Google Scholar
  24. 24.
    Knezevic B, Ledgerwood DM. Gambling severity, impulsivity, and psychopathology: comparison of treatment- and community-recruited pathological gamblers. Am J Addict. 2012;21(6):508–15.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kraplin A, Buhringer G, Oosterlaan J, van den Brink W, Goschke T, Goudriaan AE. Dimensions and disorder specificity of impulsivity in pathological gambling. Addict Behav. 2014;39(11):1646–51. S0306-4603(14)00170-1 [pii].Google Scholar
  26. 26.
    Petry NM. Substance abuse, pathological gambling, and impulsiveness. Drug Alcohol Depend. 2001;63(1):29–38.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rodriguez-Jimenez R, Avila C, Jimenez-Arriero MA, Ponce G, Monasor R, Jimenez M, et al. Impulsivity and sustained attention in pathological gamblers: influence of childhood ADHD history. J Gambl Stud. 2006;22(4):451–61.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Albein-Urios N, Martinez-Gonzalez JM, Lozano O, Clark L, Verdejo-Garcia A. Comparison of impulsivity and working memory in cocaine addiction and pathological gambling: implications for cocaine-induced neurotoxicity. Drug Alcohol Depend. 2012;126(1–2):1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Billieux J, Lagrange G, Van der Linden M, Lancon C, Adida M, Jeanningros R. Investigation of impulsivity in a sample of treatment-seeking pathological gamblers: a multidimensional perspective. Psychiatry Res. 2012;198(2):291–6.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cyders MA, Smith GT. Clarifying the role of personality dispositions in risk for increased gambling behavior. Pers Individ Dif. 2008;45(6):503–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Grall-Bronnec M, Wainstein L, Feuillet F, Bouju G, Rocher B, Venisse JL, Sebille-Rivain V. Clinical profiles as a function of level and type of impulsivity in a sample group of at-risk and pathological gamblers seeking treatment. J Gambl Stud. 2012;28(2):239–52.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Michalczuk R, Bowden-Jones H, Verdejo-Garcia A, Clark L. Impulsivity and cognitive distortions in pathological gamblers attending the UK National Problem Gambling Clinic: a preliminary report. Psychol Med. 2011;41(12):2625–35. S003329171100095X [pii].Google Scholar
  33. 33.
    Berg JM, Latzman RD, Bliwise NG, Lilienfeld SO. Parsing the heterogeneity of impulsivity: a meta-analytic review of the behavioral implications of the UPPS for psychopathology. Psychol Assess. 2015;27(4):1129–46.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Littlefield AK, Stevens AK, Sher KJ. Impulsivity and alcohol involvement: multiple, distinct constructs and processes. Curr Addict Rep. 2014;1:33–40.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Stanford MS, Mathias CW, Dougherty DM, Lake SL, Anderson NE, Patton JH. Fifty years of the Barratt impulsiveness scale: an update and review. Personal Individ Differ. 2009;47:385–95.CrossRefGoogle Scholar
  36. 36.
    Fillmore MT, Rush CR. Impaired inhibitory control of behavior in chronic cocaine users. Drug Alcohol Depend. 2002;66(3):265–73.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hester R, Garavan H. Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci. 2004;24(49):11017–22.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kaufman JN, Ross TJ, Stein EA, Garavan H. Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J Neurosci. 2003;23(21):7839–43.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Moeller FG, Barratt ES, Fischer CJ, Dougherty DM, Reilly EL, Mathias CW, Swann AC. P300 event-related potential amplitude and impulsivity in cocaine-dependent subjects. Neuropsychobiology. 2004;50(2):167–73.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Verdejo-Garcia AJ, Perales JC, Perez-Garcia M. Cognitive impulsivity in cocaine and heroin polysubstance abusers. Addict Behav. 2007;32(5):950–66. S0306-4603(06)00216-4 [pii].Google Scholar
  41. 41.
    Clark L, Robbins TW, Ersche KD, Sahakian BJ. Reflection impulsivity in current and former substance users. Biol Psychiatry. 2006;60(5):515–22. S0006-3223(05)01397-1 [pii]Google Scholar
  42. 42.
    Ersche KD, Clark L, London M, Robbins TW, Sahakian BJ. Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology. 2006;31(5):1036–47. 1300889 [pii].Google Scholar
  43. 43.
    Gruber SA, Silveri MM, Yurgelun-Todd DA. Neuropsychological consequences of opiate use. Neuropsychol Rev. 2007;17(3):299–315.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mintzer MZ, Stitzer ML. Cognitive impairment in methadone maintenance patients. Drug Alcohol Depend. 2002;67(1):41–51.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bjork JM, Hommer DW, Grant SJ, Danube C. Impulsivity in abstinent alcohol-dependent patients: relation to control subjects and type 1-/type 2-like traits. Alcohol. 2004;34(2–3):133–50.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Neurocognitive functions in pathological gambling: a comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction. 2006;101(4):534–47.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kamarajan C, Porjesz B, Jones KA, Choi K, Chorlian DB, Padmanabhapillai A, et al. The role of brain oscillations as functional correlates of cognitive systems: a study of frontal inhibitory control in alcoholism. Int J Psychophysiol. 2004;51(2):155–80.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Morgan MJ. Recreational use of “ecstasy” (MDMA) is associated with elevated impulsivity. Neuropsychopharmacology. 1998;19(4):252–64. S0893-133X(98)00012-8 [pii].Google Scholar
  49. 49.
    Morgan MJ, Impallomeni LC, Pirona A, Rogers RD. Elevated impulsivity and impaired decision-making in abstinent ecstasy (MDMA) users compared to polydrug and drug-naive controls. Neuropsychopharmacology. 2006;31(7):1562–73. 1300953 [pii].Google Scholar
  50. 50.
    Quednow BB, Kuhn KU, Hoppe C, Westheide J, Maier W, Daum I, Wagner M. Elevated impulsivity and impaired decision-making cognition in heavy users of MDMA (“Ecstasy”). Psychopharmacology (Berl). 2007;189(4):517–30.CrossRefGoogle Scholar
  51. 51.
    Monterosso JR, Aron AR, Cordova X, Xu J, London ED. Deficits in response inhibition associated with chronic methamphetamine abuse. Drug Alcohol Depend. 2005;79(2):273–7. S0376-8716(05)00060-8 [pii].Google Scholar
  52. 52.
    Salo R, Nordahl TE, Possin K, Leamon M, Gibson DR, Galloway GP, et al. Preliminary evidence of reduced cognitive inhibition in methamphetamine-dependent individuals. Psychiatry Res. 2002;111(1):65–74.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    van der Plas EA, Crone EA, van den Wildenberg WP, Tranel D, Bechara A. Executive control deficits in substance-dependent individuals: a comparison of alcohol, cocaine, and methamphetamine and of men and women. J Clin Exp Neuropsychol. 2009;31(6):706–19. 906024863 [pii].Google Scholar
  54. 54.
    Colzato LS, van den Wildenberg WP, Hommel B. Impaired inhibitory control in recreational cocaine users. PLoS One. 2007;2(11):e1143.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Brand M, Roth-Bauer M, Driessen M, Markowitsch HJ. Executive functions and risky decision-making in patients with opiate dependence. Drug Alcohol Depend. 2008;97(1–2):64–72.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pau CW, Lee TM, Chan SF. The impact of heroin on frontal executive functions. Arch Clin Neuropsychol. 2002;17(7):663–70.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Fernandez-Serrano MJ, Perez-Garcia M, Verdejo-Garcia A. What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neurosci Biobehav Rev. 2011;35(3):377–406. S0149-7634(10)00092-8 [pii].Google Scholar
  58. 58.
    Schulte MH, Cousijn J, den Uyl TE, Goudriaan AE, van den Brink W, Veltman DJ, et al. Recovery of neurocognitive functions following sustained abstinence after substance dependence and implications for treatment. Clin Psychol Rev. 2014;34(7):531–50. S0272-7358(14)00119-6 [pii].Google Scholar
  59. 59.
    Kertzman S, Lowengrub K, Aizer A, Vainder M, Kotler M, Dannon PN. Go-no-go performance in pathological gamblers. Psychiatry Res. 2008;161(1):1–10. S0165-1781(07)00210-7 [pii].Google Scholar
  60. 60.
    Kertzman S, Lowengrub K, Aizer A, Nahum ZB, Kotler M, Dannon PN. Stroop performance in pathological gamblers. Psychiatry Res. 2006;142(1):1–10. S0165-1781(05)00242-8 [pii].Google Scholar
  61. 61.
    Smith JL, Mattick RP, Jamadar SD, Iredale JM. Deficits in behavioural inhibition in substance abuse and addiction: a meta-analysis. Drug Alcohol Depend. 2014;145:1–33.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Joos L, Goudriaan AE, Schmaal L, Fransen E, van den Brink W, Sabbe BG, Dom G. Effect of modafinil on impulsivity and relapse in alcohol dependent patients: a randomized, placebo-controlled trial. Eur Neuropsychopharmacol. S0924-977X(12)00283-0 [pii]. 2012.Google Scholar
  63. 63.
    Zack M, Poulos CX. Effects of the atypical stimulant modafinil on a brief gambling episode in pathological gamblers with high vs. low impulsivity. J Psychopharmacol. 2009;23(6):660–71. 0269881108091072 [pii].Google Scholar
  64. 64.
    Luijten M, Machielsen MW, Veltman DJ, Hester R, de Haan L, Franken IH. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J Psychiatry Neurosci. 2014;39(3):149–69.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Amlung M, Vedelago L, Acker J, Balodis I, MacKillop J. Steep delay discounting and addictive behavior: a meta-analysis of continuous associations. Addiction. 2017;112(1):51–62.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Petry NM. Delay discounting of money and alcohol in actively using alcoholics, currently abstinent alcoholics, and controls. Psychopharmacology. 2001;154(3):243–50.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kirby KN, Petry NM, Bickel WK. Heroin addicts have higher discount rates for delayed rewards than nondrug-using controls. J Exp Psychol Gen. 1999;128:78–87.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kirby KN, Petry NM. Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction. 2004;99:461–71.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Dom G, De WB, Hulstijn W, van den Brink W, Sabbe B. Behavioural aspects of impulsivity in alcoholics with and without a cluster-B personality disorder. Alcohol Alcohol. 2006;41(4):412–20. agl030 [pii].Google Scholar
  70. 70.
    Petry NM. Discounting of delayed rewards in substance abusers: relationship to antisocial personality disorder. Psychopharmacology (Berl). 2002;162(4):425–32.CrossRefGoogle Scholar
  71. 71.
    Dixon MR, Marley J, Jacobs EA. Delay discounting by pathological gamblers. J Appl Behav Anal. 2003;36(4):449–58.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Miedl SF, Buchel C, Peters J. Cue-induced craving increases impulsivity via changes in striatal value signals in problem gamblers. J Neurosci. 2014;34(13):4750–5.Google Scholar
  73. 73.
    Bechara A, Damasio H. Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia. 2002;40(10):1675–89.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bechara A, Martin EM. Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology. 2004;18(1):152–62.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Dom G, De WB, Hulstijn W, van den Brink W, Sabbe B. Decision-making deficits in alcohol-dependent patients with and without comorbid personality disorder. Alcohol Clin Exp Res. 2006;30(10):1670–7. ACER202 [pii].Google Scholar
  76. 76.
    Ernst M, Grant SJ, London ED, Contoreggi CS, Kimes AS, Spurgeon L. Decision making in adolescents with behavior disorders and adults with substance abuse. Am J Psychiatr. 2003;160(1):33–40.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ersche KD, Fletcher PC, Lewis SJ, Clark L, Stocks-Gee G, London M, et al. Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals. Psychopharmacology (Berl). 2005;180(4):612–23.CrossRefGoogle Scholar
  78. 78.
    Rotherham-Fuller E, Shoptaw S, Berman SM, London ED. Impaired performance in a test of decision-making by opiate-dependent tobacco smokers. Drug Alcohol Depend. 2004;73(1):79–86.Google Scholar
  79. 79.
    Whitlow CT, Liguori A, Livengood LB, Hart SL, Mussat-Whitlow BJ, Lamborn CM, et al. Long-term heavy marijuana users make costly decisions on a gambling task. Drug Alcohol Depend. 2004;76(1):107–11.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Dom G, Sabbe B, Hulstijn W, van den BW. Substance use disorders and the orbitofrontal cortex: systematic review of behavioural decision-making and neuroimaging studies. Br J Psychiatry. 2005;187:209–20.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Brain Res Cogn Brain Res. 2005;23(1):137–51.CrossRefGoogle Scholar
  82. 82.
    Biernacki K, McLennan SN, Terrett G, Labuschagne I, Rendell PG. Decision-making ability in current and past users of opiates: a meta-analysis. Neurosci Biobehav Rev. 2016;71:342–51.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Brand M, Kalbe E, Labudda K, Fujiwara E, Kessler J, Markowitsch HJ. Decision-making impairments in patients with pathological gambling. Psychiatry Res. 2005;133(1):91–9.CrossRefGoogle Scholar
  84. 84.
    Cavedini P, Riboldi G, Keller R, D’Annucci A, Bellodi L. Frontal lobe dysfunction in pathological gambling patients. Biol Psychiatry. 2002;51(4):334–41.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Ashrafioun L, Rosenberg H, Cross NA, Brian TJ. Further evaluation of the construct, convergent and criterion validity of the Gambling Urge Scale with university-student gamblers. Am J Drug Alcohol Abuse. 2013;39(5):326–31.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Young MM, Wohl MJ. The gambling craving scale: psychometric validation and behavioral outcomes. Psychol Addict Behav. 2009;23(3):512–22.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ashrafioun L, Rosenberg H. Methods of assessing craving to gamble: a narrative review. Psychol Addict Behav. 2012;26(3):536–49.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Courtney KE, Schacht JP, Hutchison K, Roche DJ, Ray LA. Neural substrates of cue reactivity: association with treatment outcomes and relapse. Addict Biol. 2016;21(1):3–22.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Kuhn S, Gallinat J. Common biology of craving across legal and illegal drugs – a quantitative meta-analysis of cue-reactivity brain response. Eur J Neurosci. 2011;33(7):1318–26.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Noori HR, Cosa Linan A, Spanagel R. Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: a comprehensive meta-analysis. Eur Neuropsychopharmacol. 2016;26(9):1419–30.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Crockford DN, Goodyear B, Edwards J, Quickfall J, el-Guebaly N. Cue-induced brain activity in pathological gamblers. Biol Psychiatry. 2005;58(10):787–95.CrossRefGoogle Scholar
  92. 92.
    Goudriaan AE, de Ruiter MB, van den Brink W, Oosterlaan J, Veltman DJ. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers, and healthy controls: an fMRI study. Addict Biol. 2010;15(4):491–503.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Limbrick-Oldfield EH, Mick I, Cocks RE, McGonigle J, Sharman SP, Goldstone AP, Stokes PR, Waldman A, Erritzoe D, Bowden-Jones H, Nutt D, Lingford-Hughes A, Clark L. Neural substrates of cue reactivity and craving in gambling disorder. Transl Psychiatry. 2017;7:e992.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    van Holst RJ, van der Meer JN, McLaren DG, van den Brink W, Veltman DJ, Goudriaan AE. Interactions between affective and cognitive processing systems in problematic gamblers: a functional connectivity study. PLoS One. 2012;7(11):e49923.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Cox WM, Fadardi JS, Pothos EM. The addiction-stroop test: theoretical considerations and procedural recommendations. Psychol Bull. 2006;132(3):443–76. 2006-06233-005 [pii].Google Scholar
  96. 96.
    Loeber S, Vollstadt-Klein S, von der Goltz C, Flor H, Mann K, Kiefer F. Attentional bias in alcohol-dependent patients: the role of chronicity and executive functioning. Addict Biol. 2009;14(2):194–203. ADB146 [pii].Google Scholar
  97. 97.
    Lubman DI, Peters LA, Mogg K, Bradley BP, Deakin JF. Attentional bias for drug cues in opiate dependence. Psychol Med. 2000;30(1):169–75.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Sinclair JM, Nausheen B, Garner MJ, Baldwin DS. Attentional biases in clinical populations with alcohol use disorders: is co-morbidity ignored? Hum Psychopharmacol. 2010;25(7–8):515–24.Google Scholar
  99. 99.
    Townshend JM, Duka T. Attentional bias associated with alcohol cues: differences between heavy and occasional social drinkers. Psychopharmacology. 2001;157(1):67–74.Google Scholar
  100. 100.
    Weinstein A, Cox WM. Cognitive processing of drug-related stimuli: the role of memory and attention. J Psychopharmacol. 2006;20(6):850–9. 0269881106061116 [pii].Google Scholar
  101. 101.
    Constantinou N, Morgan CJ, Battistella S, O’Ryan D, Davis P, Curran HV. Attentional bias, inhibitory control and acute stress in current and former opiate addicts. Drug Alcohol Depend. 2010;109(1–3):220–5. S0376-8716(10)00040-2 [pii].Google Scholar
  102. 102.
    Townshend JM, Duka T. Avoidance of alcohol-related stimuli in alcohol-dependent inpatients. Alcohol Clin Exp Res. 2007;31(8):1349–57. ACER429 [pii].Google Scholar
  103. 103.
    Vollstadt-Klein S, Loeber S, von der Goltz C, Mann K, Kiefer F. Avoidance of alcohol-related stimuli increases during the early stage of abstinence in alcohol-dependent patients. Alcohol Alcohol. 2009;44(5):458–63. agp056 [pii].Google Scholar
  104. 104.
    McCusker CG, Gettings B. Automaticity of cognitive biases in addictive behaviours: further evidence with gamblers. Br J Clin Psychol. 1997;36(Pt 4):543–54.Google Scholar
  105. 105.
    Boyer M, Dickerson M. Attentional bias and addictive behaviour: automaticity in a gambling-specific modified Stroop task. Addiction. 2003;98(1):61–70.Google Scholar
  106. 106.
    Ciccarelli M, Nigro G, Griffiths MD, Cosenza M, D’Olimpio F. Attentional biases in problem and non-problem gamblers. J Affect Disord. 2016;198:135–41.Google Scholar
  107. 107.
    Ciccarelli M, Nigro G, Griffiths MD, Cosenza M, D’Olimpio F. Attentional bias in non-problem gamblers, problem gamblers, and abstinent pathological gamblers: an experimental study. J Affect Disord. 2016;206:9–16.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Miedl SF, Fehr T, Meyer G, Herrmann M. Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Res. 2010;181(3):165–73. S0925-4927(09)00277-7 [pii].Google Scholar
  109. 109.
    van Holst RJ, Veltman DJ, Buchel C, van den Brink W, Goudriaan AE. Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biol Psychiatry. 2012;71(8):741–8. S0006-3223(12)00056-X [pii].Google Scholar
  110. 110.
    Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci. 2001;21(16):RC159.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. NeuroImage. 2003;18(2):263–72.Google Scholar
  112. 112.
    Goodie AS. The role of perceived control and overconfidence in pathological gambling. J Gambl Stud. 2005;21:481–502.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Reuter J, Raedler T, Rose M, Hand I, Glascher J, Buchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. 2005;8(2):147–8.Google Scholar
  114. 114.
    Tanabe J, Thompson L, Claus E, Dalwani M, Hutchison K, Banich MT. Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Hum Brain Mapp. 2007;28(12):1276–86.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Luijten M, Schellekens AF, Kuhn S, Machielse MW, Sescousse G. Disruption of reward processing in addiction : an image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiatry. 2017.Google Scholar
  116. 116.
    Brevers D, Noel X, He Q, Melrose JA, Bechara A. Increased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severity. Addict Biol. 2016;21(3):688–99.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Worhunsky PD, Malison RT, Rogers RD, Potenza MN. Altered neural correlates of reward and loss processing during simulated slot-machine fMRI in pathological gambling and cocaine dependence. Drug Alcohol Depend. 2014;145:77–86.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Miedl SF, Fehr T, Herrmann M, Meyer G. Risk assessment and reward processing in problem gambling investigated by event-related potentials and fMRI-constrained source analysis. BMC Psychiatry. 2014;14:229.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71(8):749–57.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Choi JS, Shin YC, Jung WH, Jang JH, Kang DH, Choi CH, et al. Altered brain activity during reward anticipation in pathological gambling and obsessive-compulsive disorder. PLoS One. 2012;7(9):e45938.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Hewig J, Kretschmer N, Trippe RH, Hecht H, Coles MG, Holroyd CB, Miltner WH. Hypersensitivity to reward in problem gamblers. Biol Psychiatry. 2010;67(8):781–3. S0006-3223(09)01346-8 [pii].Google Scholar
  122. 122.
    Billieux J, Van der Linden M, Khazaal Y, Zullino D, Clark L. Trait gambling cognitions predict near-miss experiences and persistence in laboratory slot machine gambling. Br J Psychol. 2012;103(3):412–27.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Ulrich N, Ambach W, Hewig J. Severity of gambling problems modulates autonomic reactions to near outcomes in gambling. Biol Psychol. 2016;119:11–20.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Chase HW, Clark L. Gambling severity predicts midbrain response to near-miss outcomes. J Neurosci. 2010;30(18):6180–7.Google Scholar
  125. 125.
    van Holst RJ, Chase HW, Clark L. Striatal connectivity changes following gambling wins and near-misses: associations with gambling severity. Neuroimage Clin. 2014;5:232–9.Google Scholar
  126. 126.
    Sescousse G, Janssen LK, Hashemi MM, Timmer MH, Geurts DE, Ter Huurne NP, Clark L, Cools R. Amplified striatal responses to near-miss outcomes in pathological gamblers. Neuropsychopharmacology. 2016;41:2614–23.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Fauth-Buhler M, Mann K, Potenza MN. Pathological gambling: a review of the neurobiological evidence relevant for its classification as an addictive disorder. Addict Biol. 2016.Google Scholar
  128. 128.
    Figee M, Pattij T, Willuhn I, Luigjes J, van den Brink W, Goudriaan A, et al. Compulsivity in obsessive-compulsive disorder and addictions. Eur Neuropsychopharmacol. 2016;26(5):856–68.Google Scholar
  129. 129.
    de Wit SJ, de Vries FE, van der Werf YD, Cath DC, Heslenfeld DJ, Veltman EM, et al. Presupplementary motor area hyperactivity during response inhibition: a candidate endophenotype of obsessive-compulsive disorder. Am J Psychiatry. 2012;169(10):1100–8.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Jansen JM, Daams J, Koeter MW, Veltman DJ, van den Brink W, Goudriaan AE. Effects of non-invasive neuro-stimulation on craving: a meta-analysis. Neurosci Biobehav Rev. 2013;37(10):2472–80.CrossRefGoogle Scholar
  131. 131.
    Cristea IA, Kok RN, Cuijpers P. The effectiveness of cognitive bias modification interventions for substance addictions: a meta-analysis. PLoS One. 2016;11(9):e0162226.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Skorka-Brown J, Andrade J, Whalley B, May J. Playing Tetris decreases drug and other cravings in real world settings. Addict Behav. 2015;51:165–70.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Salling MC, Martinez D. Brain stimulation in addiction. Neuropsychopharmacology. 2016;41(12):2798–809.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Amiaz R, Levy D, Vainiger D, Grunhaus L, Zangen A. Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption. Addiction. 2009;104(4):653–60.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anna E. Goudriaan
    • 1
    • 2
    Email author
  • Wim van den Brink
    • 1
  • Ruth J. van Holst
    • 1
    • 3
  1. 1.Department of Psychiatry, Amsterdam University Medical Center, Amsterdam Institute for Addiction ResearchUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Research and Quality of CareArkin, Mental Health CareAmsterdamThe Netherlands
  3. 3.Donders Institute for Brain and CognitionRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations