Advertisement

Making Sentiment Analysis Algorithms Scalable

  • Marco CristaniEmail author
  • Matteo Cristani
  • Anna Pesarin
  • Claudio Tomazzoli
  • Margherita Zorzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11153)

Abstract

In this paper we introduce a simplified approach to sentiment analysis: a lexicon-driven method based upon only adjectives and adverbs. This method is compared in cross-validation with other known techniques and then compared directly to the gold standard, a sample of human subjects asked to deliver the same class of judgments computed by the method. We prove that the method is similar in accuracy and precision with the other methods. We finally argue that the approach we employ is more valid than others for it is scalable, and exportable to languages other than English.

References

  1. 1.
    Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010). European Language Resources Association (ELRA) (2010)Google Scholar
  2. 2.
    Balahur, A., Turchi, M.: Multilingual sentiment analysis using machine translation? In: Proceedings of the 3rd Workshop in Computational Approaches to Subjectivity and Sentiment Analysis, WASSA 2012, pp. 52–60 (2012)Google Scholar
  3. 3.
    Benamara, F., Cesarano, C., Picariello, A., Reforgiato, D., Subrahmanian, V.S.: Sentiment analysis: adjectives and adverbs are better than adjectives alone. In: Proceedings of the International Conference on Weblogs and Social Media (ICWSM) (2007)Google Scholar
  4. 4.
    Combi, C., Zorzi, M., Pozzani, G., Arzenton, E., Moretti, U.: Normalizing spontaneous reports into MedDRA: some experiments with MagiCoder. IEEE J. Biomed. Health Inform. 1–8 (2018).  https://doi.org/10.1109/JBHI.2018.2861213
  5. 5.
    Combi, C., Zorzi, M., Pozzani, G., Moretti, U., Arzenton, E.: From narrative descriptions to MedDRA: automagically encoding adverse drug reactions. J. Biomed. Inform. 84, 184–199 (2018)CrossRefGoogle Scholar
  6. 6.
    Cristani, M., Bertolaso, A., Scannapieco, S., Tomazzoli, C.: Future paradigms of automated processing of business documents. Int. J. Inf. Manag. 40, 67–75 (2018)CrossRefGoogle Scholar
  7. 7.
    Cristani, M., Olivieri, F., Tomazzoli, C.: Viral experiments. In: 3rd International Workshop on Knowledge Discovery on the WEB, KDWeb 2017, vol. 1959. CEUR Workshop Proceedings, pp. 27–35 (2017)Google Scholar
  8. 8.
    Di Caro, L., Grella, M.: Sentiment analysis via dependency parsing. Comput. Stand. Interfaces 35(5), 442–453 (2013)CrossRefGoogle Scholar
  9. 9.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)zbMATHGoogle Scholar
  10. 10.
    Esuli, A., Sebastiani, F.: Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation, LREC 2006, pp. 417–422 (2006)Google Scholar
  11. 11.
    Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel Methods - Support Vector Learning. MIT Press (1999)Google Scholar
  12. 12.
    Liu, B.: Sentiment analysis and opinion mining (2012)Google Scholar
  13. 13.
    Lyu, K., Kim, H.: Sentiment analysis using word polarity of social media. Wirel. Pers. Commun. 89(3), 941–958 (2016)CrossRefGoogle Scholar
  14. 14.
    Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  15. 15.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the ACL02 Conference on Empirical Methods in Natural Language Processing, EMNLP 2002, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)Google Scholar
  16. 16.
    Ramanathan, N., Bing, L., Alok, C.: Sentiment analysis of conditional sentences. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1, EMNLP 2009, vol. 1, pp. 180–189 (2009)Google Scholar
  17. 17.
    Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012, pp. 1201–1211 (2012)Google Scholar
  18. 18.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-basedmethods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)CrossRefGoogle Scholar
  19. 19.
    Turney, P.D., Littman, M.L.: Measuring praise and criticism: inference of semantic orientation from association. ACM Trans. Inf. Syst. 21(4), 315–346 (2003)CrossRefGoogle Scholar
  20. 20.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995).  https://doi.org/10.1007/978-1-4757-3264-1CrossRefzbMATHGoogle Scholar
  21. 21.
    Williams, G.K., Anand, S.S.: Predicting the polarity strength of adjectives using wordnet. In: ICWSM. The AAAI Press (2009)Google Scholar
  22. 22.
    Zorzi, M., Combi, C., Lora, R., Pagliarini, M., Moretti, U.: Automagically encoding adverse drug reactions in MedDRA. In: Proceedings of the 2015 IEEE International Conference on Healthcare Informatics, ICHI 2015, pp. 90–99 (2015)Google Scholar
  23. 23.
    Zorzi, M., Combi, C., Pozzani, G., Arzenton, E., Moretti, U.: A co-occurrence based MedDRA terminology generation: some preliminary results. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 215–220. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59758-4_24CrossRefGoogle Scholar
  24. 24.
    Zorzi, M., Combi, C., Pozzani, G., Moretti, U.: Mapping free text into MedDRA by natural language processing: a modular approach in designing and evaluating software extensions. In: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, ACM-BCB 2017, pp. 27–35 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marco Cristani
    • 1
    Email author
  • Matteo Cristani
    • 1
  • Anna Pesarin
    • 1
  • Claudio Tomazzoli
    • 1
  • Margherita Zorzi
    • 1
  1. 1.University of VeronaVeronaItaly

Personalised recommendations