Advertisement

Sea Ice in Geophysical Applications

  • Ryszard StaroszczykEmail author
Chapter
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)

Abstract

The behaviour of sea ice on geophysical length scales is considered. Hence, the motion and deformation of a large ice pack consisting of a multitude of interacting ice floes and driven by wind drag and ocean current stresses is investigated. The behaviour of the pack is analysed by treating the ice cover as a two-dimensional continuum of horizontal dimensions of the order of tens to hundreds kilometres, with local properties defined by the ice thickness and the ice area concentration. The equations governing the macroscopic behaviour of the ice pack are solved in the material coordinates by applying two discrete methods: a finite-element method and a smoothed particle hydrodynamics method. The results of numerical simulations, carried out for several constitutive models describing the large-scale rheology of sea ice, are presented to illustrate the evolution of the pack under the action of wind, including variation in the ice thickness and ice concentration.

References

  1. Belytschko T, Krongauz Y, Dolbow J, Gerlach C (1998) On the completeness of meshfree particle methods. Int J Numer Method Eng 43(5):785–819.  https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5CrossRefGoogle Scholar
  2. Cummins SJ, Rudman M (1999) An SPH projection method. J Comput Phys 152(2):584–607.  https://doi.org/10.1006/jcph.1999.6246CrossRefGoogle Scholar
  3. Feltham DL (2008) Sea ice rheology. Annu Rev Fluid Mech 40:91–112.  https://doi.org/10.1146/annurev.fluid.40.111406.102151CrossRefGoogle Scholar
  4. Flato GM (1993) A particle-in-cell sea-ice model. Atmos Ocean 31(3):339–358CrossRefGoogle Scholar
  5. Flato GM, Hibler WD (1992) Modeling pack ice as a cavitating fluid. J Phys Oceanogr 22(6):626–651CrossRefGoogle Scholar
  6. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389CrossRefGoogle Scholar
  7. Gray JMNT (1999) Loss of hyperbolicity and ill-posedness of the viscous-plastic sea ice rheology in uniaxial divergent flow. J Phys Oceanogr 29:2920–2929CrossRefGoogle Scholar
  8. Gray JMNT, Killworth PD (1995) Stability of the viscous-plastic sea ice rheology. J Phys Oceanogr 25:971–978CrossRefGoogle Scholar
  9. Gray JMNT, Morland LW (1994) A two-dimensional model for the dynamics of sea ice. Phil Trans R Soc Lond A 347(1682):219–290.  https://doi.org/10.1098/rsta.1994.0045CrossRefGoogle Scholar
  10. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49–50):6641–6662.  https://doi.org/10.1016/S0045-7825(01)00254-7CrossRefGoogle Scholar
  11. Guba O, Lorenz J, Sulsky D (2013) On well-posedness of the viscous-plastic sea ice model. J Phys Oceanogr 43:2185–2199.  https://doi.org/10.1175/JPO-D-13-014.1CrossRefGoogle Scholar
  12. Gutfraind R, Savage SB (1997) Marginal ice zone rheology: comparison of results from continuum-plastic models and discrete-particle simulations. J Geophys Res 102(C6):12647–12661.  https://doi.org/10.1029/97JC00124CrossRefGoogle Scholar
  13. Gutfraind R, Savage SB (1998) Flow of fractured ice through wedge-shaped channels: smoothed particle hydrodynamics and discrete-element simulations. Mech Mater 29(1):1–17CrossRefGoogle Scholar
  14. Hibler WD (1977) A viscous sea ice law as a stochastic average of plasticity. J Geophys Res 82(27):3932–3938CrossRefGoogle Scholar
  15. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9(4):815–846CrossRefGoogle Scholar
  16. Hibler WD, Ip CF (1995) The effect of sea ice rheology on Arctic buoy drift. ASME AMD 207:255–263Google Scholar
  17. Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27(9):1849–1867CrossRefGoogle Scholar
  18. Ip CF, Hibler WD, Flato GM (1991) On the effect of rheology on seasonal sea-ice simulations. Ann Glaciol 15:17–25CrossRefGoogle Scholar
  19. Kara AB, Wallcraft AJ, Metzger EJ, Hurlburt HE, Fairall CW (2007) Wind stress drag coefficient over the global ocean. J Clim 20(23):5856–5864.  https://doi.org/10.1175/2007JCLI1825.1CrossRefGoogle Scholar
  20. Leppäranta M, Hibler WD (1985) The role of plastic interaction in marginal ice zone dynamics. J Geophys Res 90(C6):11 899–11 909.  https://doi.org/10.1029/JC090iC06p11899CrossRefGoogle Scholar
  21. Li B, Li H, Liu Y, Wang A, Ji S (2014) A modified discrete element model for sea ice dynamics. Acta Oceanol Sin 33(1):56–63.  https://doi.org/10.1007/s13131-014-0428-3CrossRefGoogle Scholar
  22. Li S, Liu WK (2004) Meshfree particle methods. Springer, BerlinGoogle Scholar
  23. Lu P, Li Z, Cheng B, Leppäranta M (2011) A parameterization of the ice-ocean drag coefficient. J Geophys Res 116(C07):C07019.  https://doi.org/10.1029/2010JC006878CrossRefGoogle Scholar
  24. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024CrossRefGoogle Scholar
  25. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574.  https://doi.org/10.1146/annurev.aa.30.090192.002551CrossRefGoogle Scholar
  26. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703–1759.  https://doi.org/10.1088/0034-4885/68/8/R01CrossRefGoogle Scholar
  27. Monaghan JJ (2012) Smoothed particle hydrodynamics and its diverse applications. Annu Rev Fluid Mech 44:323–346.  https://doi.org/10.1146/annurev-fluid-120710-101220CrossRefGoogle Scholar
  28. Morland LW, Staroszczyk R (1998) A material coordinate treatment of the sea-ice dynamics equations. Proc R Soc Lond A 454(1979):2819–2857.  https://doi.org/10.1098/rspa.1998.0283CrossRefGoogle Scholar
  29. Morris JP (1996) Analysis of smoothed particle hydrodynamics with applications. PhD thesis, Monash University, Melbourne, AustraliaGoogle Scholar
  30. Overland JE, Pease CH (1988) Modeling ice dynamics of coastal seas. J Geophys Res 93(C12):15619–15637.  https://doi.org/10.1029/JC093iC12p15619CrossRefGoogle Scholar
  31. Parkinson CL, Washington WM (1979) A large-scale numerical model of sea-ice. J Geophys Res 84(C1):311–337.  https://doi.org/10.1029/JC084iC01p00311CrossRefGoogle Scholar
  32. Pritchard RS (1975) An elastic-plastic constitutive law for sea ice. J Appl Mech Ser E 42(2):379–384CrossRefGoogle Scholar
  33. Sanderson TJO (1988) Ice mechanics. Risks to offshore structures, Graham and Trotman, LondonGoogle Scholar
  34. Schreyer HL, Sulsky DL, Munday LB, Coon M, Kwok R (2006) Elastic-decohesive constitutive model for sea ice. J Geophys Res 111(C11):C11S26  https://doi.org/10.1029/2005JC003334
  35. Schulkes RMSM, Morland LW, Staroszczyk R (1998) A finite-element treatment of sea ice dynamics for different ice rheologies. Int J Numer Anal Methods Geomech 22(3):153–174CrossRefGoogle Scholar
  36. Shen HT, Su J, Liu L (2000) SPH simulation of river ice dynamics. J Comput Phys 165(2):752–770  https://doi.org/10.1006/jcph.2000.6639CrossRefGoogle Scholar
  37. Staroszczyk R (2011) Simulation of solitary wave mechanics by a corrected smoothed particle hydrodynamics method. Arch Hydro-Eng Environ Mech 58(1–4):23–45.  https://doi.org/10.2478/v10203-011-0002-9CrossRefGoogle Scholar
  38. Staroszczyk R (2017) SPH modelling of sea-ice pack dynamics. Arch Hydro-Eng Environ Mech 64(2):115–137.  https://doi.org/10.1515/heem-2017-0008CrossRefGoogle Scholar
  39. Sulsky D, Peterson K (2011) Toward a new elastic-decohesive model of Arctic sea ice. Phys D 240(20):1674–1683.  https://doi.org/10.1016/j.physd.2011.07.005CrossRefGoogle Scholar
  40. Sulsky D, Schreyer H, Peterson K, Kwok R, Coon M (2007) Using the material-point method to model sea ice dynamics. J Geophys Res 112(C2):C02S90.  https://doi.org/10.1029/2005JC003329
  41. Tsamados M, Feltham DL, Wilchinsky AV (2013) Impact of a new anisotropic rheology on simulations of Arctic sea ice. J Geophys Res 118:91–107.  https://doi.org/10.1029/2012JC007990CrossRefGoogle Scholar
  42. Violeau D, Issa R (2007) Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. Int J Numer Methods Fluids 53(2):277–304.  https://doi.org/10.1002/fld.1292CrossRefGoogle Scholar
  43. Wilchinsky AV, Feltham DL (2004) A continuum anisotropic model of sea-ice dynamics. Proc R Soc Lond A 460(2047):2105–2140.  https://doi.org/10.1098/rspa.2004.1282CrossRefGoogle Scholar
  44. Wilchinsky AV, Feltham DL (2011) Modeling Coulombic failure of sea ice with leads. J Geophys Res 116(C08040).  https://doi.org/10.1029/2011JC007071
  45. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier Butterworth-Heinemann, AmsterdamCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Hydro-EngineeringPolish Academy of SciencesGdańskPoland

Personalised recommendations