Advertisement

Optical Remote Sensing

  • Joseph Awange
  • John Kiema
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

There are a large variety of systems for collecting remotely sensed data in operation today. Ramapriyan [1] asserts these can be categorized in several ways according.

References

  1. 1.
    Ramapriyan HK (2002) Satellite imagery in earth science applications. In: Castelli V, Bergman LD (eds) Image databases: search and retrieval of digital imagery. Wiley, New YorkGoogle Scholar
  2. 2.
    Kiema JBK (2001) Multi-source data fusion and image compression in urban remote sensing. Doctor of Engineering. Dissertation. University of Karlsruhe. Shaker Verlag, 130pp, ISBN3-8265-9312-XGoogle Scholar
  3. 3.
    Jensen JR (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  4. 4.
    Joseph G (2000) How well do we understand Earth observation electro-optical sensor parameters? ISPRS J Photogram Remote Sens 55:9–12CrossRefGoogle Scholar
  5. 5.
    Bähr H-P, Vögtle T (eds) (1998) Erderkundungssatelliten und ihre Produkte. Digitale Bildverarbeitung, vol 3. Wichmann Verlag, Heidelberg, pp 29–43Google Scholar
  6. 6.
    Forshaw MRB, Haskell A, Miller PF, Stanley DJ, Townshend JRG (1983) Spatial resolution of remotely sensed imagery: a review paper. Int J Remote Sens 4(3):497–520CrossRefGoogle Scholar
  7. 7.
    Kumi-Boateng B (2012) A spatio-temporal based estimation of vegetation changes in the Tarkwa mining area of Ghana. Doctor of Philosophy. Dissertation. University of Mines and Technology, Ghana, 165ppGoogle Scholar
  8. 8.
    Phinn SR (1998) A framework for selecting appropriate remote sensed data dimensions for environmental monitoring and management. Int J Remote Sens 19:3457–3463CrossRefGoogle Scholar
  9. 9.
    Weng Q (2010) Remote sensing and GIS integration: theories, methods, and applications. McGraw-Hill, 416pGoogle Scholar
  10. 10.
    Quattrochi DA, Goodchild MF (1997) Scale in remote sensing and GIS. Lewis Publishers, New YorkGoogle Scholar
  11. 11.
    Campbell JB (2007) Introduction to remote sensing, 4th edn. Guilford Press, New YorkGoogle Scholar
  12. 12.
    Fritz LW (1996) The era of commercial earth observation satellites. Photogram Eng Remote Sens 1:39–45Google Scholar
  13. 13.
    Aplin P, Atkinson PM, Curran PJ (1997) Fine spatial resolution satellite sensors for the next decade. Int J Remote Sens 18:3873–3881CrossRefGoogle Scholar
  14. 14.
    Murai S (2004) Remote sensing and GIS courses—distance education. Japan International Cooperation Agency (JICA)-NetGoogle Scholar
  15. 15.
    Guelman M, Ortenberg F (2009) Small satellite’s role in future hyperspectral earth observation missions. Acta Astronaut 64:1252–1263CrossRefGoogle Scholar
  16. 16.
    Kramer HJ, Cracknell A (2008) An overview of small satellites. Int J Remote sens 29:4285–4337CrossRefGoogle Scholar
  17. 17.
    Xue Y, Li Y, Guang J, Zhang X, Guo J (2008) Small satellite remote sensing applications—history, current and future. Int J Remote Sens 29:4339–4372CrossRefGoogle Scholar
  18. 18.
    McCoy R (2005) Field methods in remote sensing. The Guilford Press, New York, p 158pGoogle Scholar
  19. 19.
    Ho C, Robinson A, Millerm D, Davis M (2005) Overview of sensors and needs for environmental monitoring. Sensors 5:4–37CrossRefGoogle Scholar
  20. 20.
    Kussul N, Shelestov A, Skakun S (2009) Grid and sensor web technologies for environmental monitoring. Earth Sci Inf 2(1–2):37–51CrossRefGoogle Scholar
  21. 21.
    Porter J, Arzberger P, Braun H, Brynat P, Gage S, Hansen T, Lin C, Lin F, Kratz T, Michener W, Shapiro S, Williams T (2005) Wireless sensor networks for ecology. BioScience 55:561–572CrossRefGoogle Scholar
  22. 22.
    Congalton R, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices. Taylor & Francis GroupGoogle Scholar
  23. 23.
    Devillers R, Jeansoulin R (eds) (2006) Fundamentals of spatial data quality. ISTE Ltd, LondonGoogle Scholar
  24. 24.
    Groot R, McLaughlin J (eds) (2000) Geospatial data infrastructure: concepts, cases and good practice. Oxford University Press, OxfordGoogle Scholar
  25. 25.
    Schiewe J (1998) Experiences from the MOMS-02-Project for Future Developments. Int Arch Photogram Remote Sens 32:533–539Google Scholar
  26. 26.
    Ackermann F (1999) Airborne laser scanning present status and future expectations. ISPRS J Photogram Remote Sens 54:64–67CrossRefGoogle Scholar
  27. 27.
    Alharthy A, Bethel J (2002) Heuristic filtering and 3D feature extraction from LIDAR data. In: International archives of photogrammetry and remote sensing (IAPRS), Graz, Austria, vol XXXIV, part 3A, pp 29–34Google Scholar
  28. 28.
    Baltsavias E (1999) A comparison between photogrammetry and laser scanning. ISPRS J Photogram Remote Sens 54:83–94CrossRefGoogle Scholar
  29. 29.
    Brunn A, Weidner U (1997) Extracting buildings from digital surface models. Int Arch Photogram Remote Sens 32:27–34Google Scholar
  30. 30.
    Clode S, Rottensteinerb F, Kootsookosc P, Zelniker E (2007) Detection and vectorization of roads from LiDAR data. Photogram Eng Remote Sens 73:517–535CrossRefGoogle Scholar
  31. 31.
    Forlani G, Nardinocchi C, Scaioni M, Zingaretti P (2006) Complete classification of raw LiDAR data and 3D reconstruction of buildings. Pattern Anal Appl 8:357–374CrossRefGoogle Scholar
  32. 32.
    Haala N, Brenner C (1999) Extraction of buildings and trees in urban environments. ISPRS J Photogram Remote Sens 54:130–137CrossRefGoogle Scholar
  33. 33.
    Kokkas N (2005) City modeling and building reconstruction with Socet Set v.5.2 BAE Systems. Customer presentation at the 2005 GXP Regional User Conference. Cambridge, England, pp 19–21Google Scholar
  34. 34.
    Konecny G (2003) Geoinformation: remote sensing, photogrammetry, geographic information systems. Taylor and Francis, LondonCrossRefGoogle Scholar
  35. 35.
    Lee DH, Lee KM, Lee SU (2008) Fusion of LiDAR and imagery for reliable building extraction. Photogram Eng Remote Sens 74:215–225CrossRefGoogle Scholar
  36. 36.
    Liu X (2008) Airborne LiDAR for DEM generation: some critical issues. Prog Phys Geogr 32(1):31–49.  https://doi.org/10.1177/0309133308089496CrossRefGoogle Scholar
  37. 37.
    Ma R (2005) DEM generation and building detection from Lidar data. Photogram Eng Remote Sens 71(7):847–854CrossRefGoogle Scholar
  38. 38.
    Miliaresis G, Kokkas N (2007) Segmentation and object-based classification for the extraction of the building class from LiDAR DEMs. Comput Geosci 33:1076–1087CrossRefGoogle Scholar
  39. 39.
    Popescue SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577CrossRefGoogle Scholar
  40. 40.
    Renslow M, Greenfield P, Guay T (2000) Evaluation of multi-return LiDAR for forestry applications. Project Report for the Inventory and Monitoring Steering Committee, RSAC-2060/4810-LSP-0001-RPT1Google Scholar
  41. 41.
    Schenk T, Csatho B (2002) Fusion of LIDAR data and aerial imagery for a more complete surface description. Arch PhotogramGoogle Scholar
  42. 42.
    Secord J, Zakhor A (2007) Tree detection in urban regions using aerial lidar and image data. IEEE Geosci Remote Sens Lett 4:196–200CrossRefGoogle Scholar
  43. 43.
    Sohn G, Dowman I (2005) Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J Photogram Remote Sens 62(1):43–63CrossRefGoogle Scholar
  44. 44.
    Voss M, Sugumaran R (2008) Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach. Sensors 8:3020–3036CrossRefGoogle Scholar
  45. 45.
    Webster TL, Forbes DL, Dickie S, Shreenan R (2004) Using topographic LiDAR to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Can J Remote Sens 30:64–76CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Xie P, Li H (2007) An online colour 2D and 3D image system for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Geomatics solutions for disaster management. Lecture notes in geoinformation and cartography. Springer, Berlin, pp 1–15Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Spatial SciencesCurtin UniversityPerthAustralia
  2. 2.Department of Geospatial and Space TechnologyUniversity of Nairobi NairobiKenya

Personalised recommendations