Advertisement

Environmental Surveying and Surveillance

  • Joseph Awange
  • John Kiema
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

In this section, we discuss the quantitative and qualitative data that could be collected using GNSS satellites, and in so doing, attempt to answer the question “what can GNSS satellites deliver that are of use to environmental monitoring?” The observed parameters necessary for environmental monitoring vary, depending upon the indicators being assessed. Some are physical variables such as changes in soil patterns, vegetation, rainfall, water levels, temperature, deforestation, solar and UV radiation. Others are chemical variables , e.g., pH, salinity, nutrients, metals, pesticides, while others are biological variables , e.g., species types, ecosystem health, and indicator species.

References

  1. 1.
    Awange JL (2018) GNSS environmental sensing. Revolutionizing environmental monitoring. Springer International PublishingGoogle Scholar
  2. 2.
    Awange JL (2012) Environmental monitoring using GNSS global navigations satellite systems. Springer, HeidelbergCrossRefGoogle Scholar
  3. 3.
    Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS global navigation satellite system: GPS, GLONASS; Galileo and more. Springer, WienGoogle Scholar
  4. 4.
    US Army Corps of Engineers (2007) NAVSTAR Global Positioning System surveying. Engineering and design manual, EM 1110-1-1003Google Scholar
  5. 5.
    Schofield W, Breach M (2007) Engineering surveying, 6th edn. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    El-Rabbany A (2006) Introduction to GPS global positioning system, 2nd edn. Artech House, New YorkGoogle Scholar
  7. 7.
    Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time Global Positioning System data. Eos 92(15):125–126.  https://doi.org/10.1029/2011EO150001CrossRefGoogle Scholar
  8. 8.
    Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper. http://www.unavco.org/community_science/science_highlights/2010/realtimeGPSWhitePaper2010.pdf. Accessed 6 June 2011
  9. 9.
    Rizos C (2001) Alternatives to current GPS-RTK services and some implications for CORS infrastructure and operations. GPS Solution 11(3):151–158.  https://doi.org/10.1007/s10291-007-0056-xCrossRefGoogle Scholar
  10. 10.
    Gao Y (2006) Precise point positioning and its challenges. Inside GNSS, November/December issue, pp 16–18Google Scholar
  11. 11.
    Khodabandeh A, Teunissen PJG (2016) PPP-RTK and inter-system biases: the ISB look-up table as a means to support multi-system PPP-RTK. J Geodesy 90:837.  https://doi.org/10.1007/s00190-016-0914-9CrossRefGoogle Scholar
  12. 12.
    Snay R, Soler T (2008) Continuously operating reference station (CORS): history, applications, and future enhancements. J Surv Eng 134(4):95–104.  https://doi.org/10.1061/(ASCE)0733-9453(2008)134:4(95)CrossRefGoogle Scholar
  13. 13.
    Anderssohn J, Wetzel H, Walter TR, Motagh M, Djamour Y, Kaufmann H (2008) Land subsidence pattern controlled by old alpine basement faults in the Kashmar Valley, northeast Iran: results from InSAR and levelling. Geophys J Int 174:287–294.  https://doi.org/10.1111/j.1365-246X.2008.03805.xCrossRefGoogle Scholar
  14. 14.
    Maryam D, Zoej V, Javad M, Iman E, Ali M, Sassan S (2009) InSAR monitoring of progressive land subsidence in Neyshabour, northeast Iran. Geophys J Int 186(1):382.  https://doi.org/10.1111/j.1365-246X.2009.04135.xCrossRefGoogle Scholar
  15. 15.
    Motagh M, Djamour Y, Walter TR, Wetze H, Zschau J, Arabi S (2007) Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophys J Int 168:518–526.  https://doi.org/10.1111/j.1365-246X.2006.03246.xCrossRefGoogle Scholar
  16. 16.
    Stone W (2006) The evolution of the National Geodetic Survey’s continuously operating reference station network and online positioning user service. http://www.ngs.noaa.gov/PUBS_LIB/Evolution_of_CORS_and_OPUS.pdf. Accessed 16 May 2009
  17. 17.
    Matsuzaka S (2006) GPS network experience in Japan and its usefulness. In: Seventeenth United Nations Regional Cartographic conference for Asia and the Pacific. Geographical Survey Institute, 18–22 Sept 2006, Bangkok, ThailandGoogle Scholar
  18. 18.
    Westerhaus M, Welle W (2002) Environmental effects on tilt measurements at Merapi volcano. Bull. Inf. Mars Terrestres 137:10917–10926Google Scholar
  19. 19.
    Sagiya T (2005) A decade of GEONET: 1994–2003 the continuous GPS observation in Japan and its impact on earthquake studies? Earth Planets Space 56:xxix–xliGoogle Scholar
  20. 20.
    SAPOS (2009) Satellitenpositionierungsdienst der deutschen Landesvermessung. http://www.sapos.de/. Accessed 16 May 2009
  21. 21.
    Wolfgang D (2005) Funktion und Nutzung des SAPOS - Deutschland-Netzes, Flächenmanagement und Bodenordnung (FuB). http://www.sapos.de/pdf/SAPOS_Deutschland_Netz_klein.pdf. Accessed 16 May 2009
  22. 22.
    Geoscience Australia (2009) Australian regional GPS network. http://www.ga.gov.au/geodesy/argn/. Accessed 16 May 2009
  23. 23.
    Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New YorkGoogle Scholar
  24. 24.
    Awange JL, Grafarend EW (2005) Solving algebraic computational problems in geodesy and geoinformatics. Springer, BerlinGoogle Scholar
  25. 25.
    Rieser D (2008) Comparison of GRACE-derived monthly surface mass variations with rainfall data in Australia. M.Sc. thesis, Graz University of TechnologyGoogle Scholar
  26. 26.
    Featherstone WE, Kirby JF, Kearsley AHW, Gilliland JR, Johnston GM, Steed J (2001) The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data. J Geodesy 75(5–6):313–330.  https://doi.org/10.1007/s001900100177CrossRefGoogle Scholar
  27. 27.
    Prasad R, Ruggieri M (2005) Applied satellite navigation using GPS, GALILEO and augmentation systems. Artech House, Boston/LondonGoogle Scholar
  28. 28.
    Awange JL, Grafarend EW, Palánczz B, Zaletnyik P (2010) Algebraic geodesy and geoinformatics, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  29. 29.
    Awange JL, Palánczz B (2016) Geospatial algebraic computations—theory and applications, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  30. 30.
    Awange JL, Palánczz B, Lewis RH, Völgyesi L (2016) Mathematical geosciences-hybrid symbolic-numeric methods. Springer International PublishingGoogle Scholar
  31. 31.
    IGS (2009) International GNSS Service. http://igscb.jpl.nasa.gov/. Accessed 16 May 2009
  32. 32.
    Grafarend EW, Krum FW (2006) Map projections—cartographic information systems. Springer, BerlinGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Spatial SciencesCurtin UniversityPerthAustralia
  2. 2.Department of Geospatial and Space TechnologyUniversity of Nairobi NairobiKenya

Personalised recommendations