Advertisement

Satellite Environmental Sensing

  • Joseph Awange
  • John Kiema
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

GNSS satellites such as GPS are playing an increasingly crucial role in tracking low earth orbiting (LEO) remote sensing satellites at altitudes below 3000 km with accuracies of better than 10 cm (Yunck in IEEE Trans Geosci Remote Sens 28:108–116 1990, [2]). These remote sensing satellites employ a precise global network of GNSS, GRACE (Gravity Recovery And Climate Experiment) and Altimetry ground receivers operating in concert with receivers onboard the LEO satellites, with all estimating the satellites’ orbits, GPS orbits, and selected ground locations simultaneously (Yunck in IEEE Trans Geosci Remote Sens 28:108–116 1990, [2]).

References

  1. 1.
    Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time Global Positioning System data. Eos 92(15):125–126.  https://doi.org/10.1029/2011EO150001CrossRefGoogle Scholar
  2. 2.
    Yunck TP, Wu SC, Wu JT, Thornton CL (1990) Precise tracking of remote sensing satellites with the Global Positioning System. IEEE Trans Geosci Remote Sens 28:108–116CrossRefGoogle Scholar
  3. 3.
    Wickert J (2002) Das CHAMP-Radiookkultationsexperiment: Algorithmen, Prozessierungssystem und erste Ergebnisse. Dissertation. Scientific Technical Report STR02/07, GFZ PotsdamGoogle Scholar
  4. 4.
    Foelsche U, Borsche M, Steiner AK, Gobiet M, Pirscher B, Kirchengast G, Wickert J, Schmidt T (2007) Observing upper troposphere-lower stratosphere climate with radio occultation from the CHAMP satellite. Clim Dyn 31:49–65CrossRefGoogle Scholar
  5. 5.
    Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmos Chem Phys 5:1473–1488CrossRefGoogle Scholar
  6. 6.
    Schmidt T, Wickert J, Beyerle G, Heise S (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophys Res Lett 35:L11806.  https://doi.org/10.1029/2008GL034012CrossRefGoogle Scholar
  7. 7.
    Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111:D21101.  https://doi.org/10.1029/2006JD007363CrossRefGoogle Scholar
  8. 8.
    Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo YH, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission: early results. Bull Am Meteorol Soc 89(3):313–333CrossRefGoogle Scholar
  9. 9.
    Awange JL (2012) Environmental monitoring using GNSS, global navigation satellite system. Springer, BerlinCrossRefGoogle Scholar
  10. 10.
    Belvis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of water vapour using global positioning system. J Geophys Res 97:15787–15801CrossRefGoogle Scholar
  11. 11.
    Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paperGoogle Scholar
  12. 12.
    Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy K, Kursinski R, Mechan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication 94-18Google Scholar
  13. 13.
    Healey S, Jupp A, Offiler D, Eyre J (2003) The assimilation of radio occultation measurements. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, HeidelbergGoogle Scholar
  14. 14.
    Kuo Y-H, Sokolovski SV, Anthens RA, Vandenberghe F (2000) Assimilation of the GPS radio occultation data for numerical weather prediction. Terr Atmos Ocean Sci 11:157–186CrossRefGoogle Scholar
  15. 15.
    Steiner AK, Kirchengast G, Foelsche U, Kornblueh L, Manzini E, Bengtsson L (2001) GNSS occultation sounding for climate monitoring. Phys Chem Earth (A) 26:113–124CrossRefGoogle Scholar
  16. 16.
    Yunck TP (2003) The promise of spaceborne GPS for Earth remote sensing. In: International workshop on GPS meteorology, 14th–17th January 2003, Tsukuba, JapanGoogle Scholar
  17. 17.
    Anthes RA (2004) Application of GPS remote sensing to meteorology and related fields. J Meteorol Soc Jpn 82(1B)Google Scholar
  18. 18.
    Foelsche U, Kirchengast G, Steiner AK (2006) Atmosphere and climate. Studies by occultation methods, Springer, BerlinCrossRefGoogle Scholar
  19. 19.
    Ware H, Fulker D, Stein S, Anderson D, Avery S, Clerk R, Droegmeier K, Kuettner J, Minster B, Sorooshian S (2000) SuomiNet: a real time national GPS network for atmospheric research and education. Bull Am Meteorol Soc 81:677–694CrossRefGoogle Scholar
  20. 20.
    Resch GM (1984) Water vapour radiometry in geodetic applications. In: Brunner FK (ed) Geodetic refraction. Springer, New York, pp 53–84CrossRefGoogle Scholar
  21. 21.
    Thayer D (1974) An improved equation for the radio refractive index of air. Radio Sci 9:803–807CrossRefGoogle Scholar
  22. 22.
    Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New YorkGoogle Scholar
  23. 23.
    Davis JL, Herring TA, Shapiro II, Rogers AE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20:1593–1607CrossRefGoogle Scholar
  24. 24.
    Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246CrossRefGoogle Scholar
  25. 25.
    Belvis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386CrossRefGoogle Scholar
  26. 26.
    Rocken C, Ware R, Hove TV, Solheim F, Alber C, Johnson J, Belvis M, Businger S (1993) Sensing atmospheric water vapour with the Global Positioning System. Geophys Res Lett 20(23):2631–2634CrossRefGoogle Scholar
  27. 27.
    Tralli DM, Lichten SM (1990) Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. Bull Geod 64:127–159CrossRefGoogle Scholar
  28. 28.
    Askne J, Nordius H (1987) Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci 22:379–386CrossRefGoogle Scholar
  29. 29.
    Khandu, (2008) GPS remote sensing of the Australian Tropopause. Honours dissertation. Curtin University of TechnologyGoogle Scholar
  30. 30.
    Schmidt T, Wickert J, Beyerle G, Reigber C (2004) Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. J Geophys Res 109:D13105.  https://doi.org/10.1029/2004JD004566CrossRefGoogle Scholar
  31. 31.
    Ray M, Tido S, Conor S, Wang S (2006) Impact of balloon drift errors in radiosonde data on 57 climate statistics. J Clim 19(14):3430–3442CrossRefGoogle Scholar
  32. 32.
    Wickert J (2004) Comparison of vertical refractivity and temperature profiles from CHAMP with radiosonde measurements. Danish Meteorological Institute, CopenhagenGoogle Scholar
  33. 33.
    Kuo Y-H, Schreiner WS, Wang J, Rossiter DL, Zhang Y (2005) Comparison of GPS Radio occultation soundings with radiosondes. Geophys Res Lett 32.  https://doi.org/10.1029/2004GL021443
  34. 34.
    Arras C, Jacobi C, Wickert J, Heise S, Schmidt T (2010) Sporadic \(E\) signatures revealed from multi-satellite radio occultation measurements. Adv Radio Sci 8:225–230.  https://doi.org/10.5194/ars-8-225-2010CrossRefGoogle Scholar
  35. 35.
    Wickert J, Beyerle G, Hajj GA, Schwieger V, Reigber C (2002) GPS radio occultation with CHAMP: atmospheric profiling utilizing the space-based single differencing technique. Geophys Res Lett 29(8)  https://doi.org/10.1029/2001GL013982
  36. 36.
    Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32(L13806).  https://doi.org/10.1029/2005GL023109
  37. 37.
    Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C, Healy S, Heise S, Huang C, Jakowski N, Khler W, Mayer C, Offiler D, Ozawa E, Pavelyev A, Rothacher M, Tapley B, Arras C (2008) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Atmospheric and Oceanic Sciences (in press), TerrestrialGoogle Scholar
  38. 38.
    Cheng CZ, Kuo Y-H, Anthes RA, Wu L (2006) Satellite constellation monitors global and space weather. EOS Trans Am Geophys Union 87:166.  https://doi.org/10.1029/2006EO170003CrossRefGoogle Scholar
  39. 39.
    Tsuda T, Hocke K (2004) Application of GPS occultation for studies of atmospheric waves in the middle atmosphere and ionosphere. In: Anthens et al (eds) Application of GPS remote sensing to meteorology and related fields, Journal of Meteorological Society of Japan, vol 82, No. 1B, pp 419–426Google Scholar
  40. 40.
    Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of apace geodetic data. J Geophys Res 102(B9):20489–20502CrossRefGoogle Scholar
  41. 41.
    Tsuda T, Heki K, Miyazaki S, Aonashi K, Hirahara K, Tobita M, Kimata F, Tabei T, Matsushima T, Kimura F, Satomura M, Kato T, Naito I (1998) GPS meteorology project of Japan-Exploring frontiers of geodesy-. Earth Planets Space 50(10):i–vCrossRefGoogle Scholar
  42. 42.
    Hanssen RF, Weckwerth TM, Zebker HA, Klees R (1999) High-resolution water vapour mapping from interferometric radar measurements. Science 283:1297–1299CrossRefGoogle Scholar
  43. 43.
    Heise S, Wickert J, Beyerle G, Schmidt T, Reigber C (2006) Global monitoring of tropospheric water vapour with GPS radio occultation aboard CHAMP. Adv Space Res 37(12):2222–2227CrossRefGoogle Scholar
  44. 44.
    Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36:L15401.  https://doi.org/10.1029/2009GL038718CrossRefGoogle Scholar
  45. 45.
    Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J Geod 85:723–740.  https://doi.org/10.1007/s00190-011-0482-yCrossRefGoogle Scholar
  46. 46.
    Rieser D (2008) Comparison of GRACE-derived monthly surface mass variations with rainfall data in Australia. MSc Thesis. Graz University of TechnologyGoogle Scholar
  47. 47.
    Pool DR, Eychaner JH (1995) Measurements of aquifer-storage change and specific yield using gravity surveys. Ground Water 33(3):425–432CrossRefGoogle Scholar
  48. 48.
    Ellett KM, Walker JP, Western AW, Rodell M (2006) A framework for assessing the potential of remote sensed gravity to provide new insight on the hydrology of the Murray-Darling Basin. Aust J Water Resour 10(2):89–101Google Scholar
  49. 49.
    Awange JL, Sharifi MA, Baur O, Keller W, Featherstone WE, Kuhn M (2009) GRACE hydrological monitoring of Australia. Current limitations and future prospects. J Spat Sci 54(1):23–36.  https://doi.org/10.1080/14498596.2009.9635164CrossRefGoogle Scholar
  50. 50.
    Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions - principles and aims. J Geodyn 33(1):3–20.  https://doi.org/10.1016/S0264-3707(01)00050-3CrossRefGoogle Scholar
  51. 51.
    Schrama EJO, Visser PNAM (2007) Accuracy assessment of the monthly GRACE geoids based upon a simulation. J Geod 81(1):67–80.  https://doi.org/10.1007/s00190-006-0085-1CrossRefGoogle Scholar
  52. 52.
    Prasad R, Ruggieri M (2005) Applied satellite navigation using GPS. GALILEO and augmentation systems, Artech House, BostonGoogle Scholar
  53. 53.
    Luthcke S, Rowlands D, Lemoine F, Klosko S, Chinn D, McCarthy J (2006) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys Res Lett 33:L02402.  https://doi.org/10.1029/2005GL024846CrossRefGoogle Scholar
  54. 54.
    Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505.  https://doi.org/10.1126/science.1099192CrossRefGoogle Scholar
  55. 55.
    Bruinsma S, Lemoine J, Biancale R, Valès N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45(4):587–601.  https://doi.org/10.1016/j.asr.2009.10.012CrossRefGoogle Scholar
  56. 56.
    Lemoine F, Luthcke S, Rowlands D, Chinn D, Klosko S, Cox C (2007) The use of mascons to resolve time-variable gravity from GRACE. In: Tregoning P, Rizos C (eds) Dynamic planet. Springer, Berlin, pp 231–236CrossRefGoogle Scholar
  57. 57.
    Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158(3):813–826.  https://doi.org/10.1111/j.1365-246X.2004.02328.x
  58. 58.
    Chambers D, Wahr J, Nerem R (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31(L13310).  https://doi.org/10.1029/2004GL020461
  59. 59.
    Wahr J, Jayne S, Bryan F (2002) A method of inferring changes in deep ocean currents from satellite measurements of time-variable gravity. J Geophys Res 107(C12):3218.  https://doi.org/10.1029/2002JC001274CrossRefGoogle Scholar
  60. 60.
    Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour Res 35(9):2705–2724.  https://doi.org/10.1029/1999WR900141CrossRefGoogle Scholar
  61. 61.
    Tiwari V, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401.  https://doi.org/10.1029/2009GL039401CrossRefGoogle Scholar
  62. 62.
    Werth S, Güntner A, Petrovic S, Schmidt R (2009) Integration of GRACE mass variations into a global hydrological model. Earth Planet Sci Lett 27(1–2):166–173.  https://doi.org/10.1016/j.epsl.2008.10.021CrossRefGoogle Scholar
  63. 63.
    Baur O, Kuhn M, Featherstone W (2009) GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J Geophys Res 114(B06407).  https://doi.org/10.1029/2008JB006239
  64. 64.
    Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503.  https://doi.org/10.1029/2009GL040222CrossRefGoogle Scholar
  65. 65.
    Boy J-P, Chao B (2005) Precise evaluation of atmospheric loading effects on Earth’s time-variable gravity field. J Geophys Res - Solid Earth 110(B8):4–12.  https://doi.org/10.1029/2002JB002333CrossRefGoogle Scholar
  66. 66.
    Swenson S, Wahr J (2002) Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid. J Geophys Res 107(B9):2194.  https://doi.org/10.1029/2000JB000024CrossRefGoogle Scholar
  67. 67.
    Barletta V, Sabadini R, Bordoni A (2008) Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. Geophys J Int 172(1):18–30.  https://doi.org/10.1111/j.1365-246X.2007.03630.xCrossRefGoogle Scholar
  68. 68.
    Tregoning P, Ramillien G, McQueen H, Zwartz D (2009) Glacial isostatic adjustment and nonstationary signals observed by GRACE. J Geophys Res 114:B06406.  https://doi.org/10.1029/2008JB006161CrossRefGoogle Scholar
  69. 69.
    Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 39(8):1223.  https://doi.org/10.1029/2002WR001736CrossRefGoogle Scholar
  70. 70.
    Ramillien G, Frappart F, Cazenave A, Gntner A (2005) Time variations of land water storage from an inversion of two years of GRACE geoids [rapid communication]. Earth Planet Sci Lett 235(1–2):283–301.  https://doi.org/10.1016/j.epsl.2005.04.005CrossRefGoogle Scholar
  71. 71.
    Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res (Solid Earth) 103(B12):30205–30230.  https://doi.org/10.1029/98JB02844CrossRefGoogle Scholar
  72. 72.
    Heiskanen WA, Moritz H (1967) Physical Geodesy. San Francisco, W.H, Freeman and CompanyGoogle Scholar
  73. 73.
    Arras C, Jacobi C, Wickert J, Heise S, Schmidt T (2010) Sporadic E signatures revealed from multi-satellite radio occultation measurements. Advances in Radio Science 8:225–230.  https://doi.org/10.5194/ars-8-225-2010CrossRefGoogle Scholar
  74. 74.
    Yang Q (2016) Applications of Satellite Geodesy in Environmental and Climate Change. Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6440. Accessed 26 Jan 2017
  75. 75.
    Pugh D (2004) Changing sea levels. Effect of tides, weather and climate. Cambridge University Press, CambridgeGoogle Scholar
  76. 76.
    Abdalati W, Zwally HJ, Bindschadler B, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser altimetry mission. Proc IEEE 98(5):735–751.  https://doi.org/10.1109/JPROC.2009.2034765CrossRefGoogle Scholar
  77. 77.
    Yang D, Zhou Y, Wang Y (2009) Remote sensing with reflected signals. GNSS-R data processing software and test analysis. Inside GNSS Sept/Oct:40–45Google Scholar
  78. 78.
    Martín-Neira M (1993) A passive reflectometry and interferometry system (PARIS): application to ocean altimetry. ESA J 17(4):331–335Google Scholar
  79. 79.
    Lowe ST, Zuffada C, Chao Y, Kroger P, Young LE, LaBrecque JL (2002) 5-cm-Precision aircraft ocean altimetry using GPS reflections. Geophys Res Lett 29(10):1375.  https://doi.org/10.1029/2002GL014759CrossRefGoogle Scholar
  80. 80.
    Lowe ST, LaBrecque JL, Zuffada C, Romans LJ, Young L, Hajj GA (2002) First spaceborne observation of an earth-reflected GPS signal. Radio Sci 37(1):1007.  https://doi.org/10.1029/2000RS002539CrossRefGoogle Scholar
  81. 81.
    Cardellach E, Fabra F, Rius A, Pettinato S, D’Addio S (2012) Characterization of dry-snow sub-structure using GNSS reflected signals. Remote Sens Environ 124:122–134.  https://doi.org/10.1016/j.rse.2012.05.012CrossRefGoogle Scholar
  82. 82.
    Egido A, Delas M, Garcia M, Caparrini M (2009) Non-space applications of GNSS-R: from research to operational services. Examples of water and land monitoring systems. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Cape Town, pp. II-170–II-173Google Scholar
  83. 83.
    Gleason S, Hodgart S, Sun Y, Gommenginger C, Mackin S, Adjrad M, Unwin M (2005) Detection and processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing. IEEE Trans Geosci Remote Sens 43(6):1229–1241.  https://doi.org/10.1109/TGRS.2005.845643CrossRefGoogle Scholar
  84. 84.
    Larson KM, Gutmann ED, Zavorotny VU, Braun JJ, Williams MW, Nievinski FG (2009) Can we measure snow depth with GPS receivers? Geophys Res Lett 36(17).  https://doi.org/10.1029/2009GL039430
  85. 85.
    Larson KM, Small EE, Gutmann ED, Bilich AL, Braun JJ, Zavorotny VU (2008) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35:L24405.  https://doi.org/10.1029/2008GL036013CrossRefGoogle Scholar
  86. 86.
    Larson KM (2009) GPS seismology. J Geod 83:227–233.  https://doi.org/10.1007/s00190-008-0233-xCrossRefGoogle Scholar
  87. 87.
    Trenberth K, Guillemot C (1996) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP Reanalyses. NCAR Technical Note TN-430, DecemberGoogle Scholar
  88. 88.
    Wickert J, Beyerle G, Konig K, Heise S, Grunwaldt L, Michalak G, Reigber C, Schmidt T (2005) GPS radio ocultation with CHAMP and GRACE: a first look at a new and promising satellite configuration for global atmospheric sounding. Ann Geophys 23:653–657CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Spatial SciencesCurtin UniversityPerthAustralia
  2. 2.Department of Geospatial and Space TechnologyUniversity of Nairobi NairobiKenya

Personalised recommendations