Advertisement

Ocean Ecosystems Plankton Classification

  • A. LuminiEmail author
  • L. Nanni
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 804)

Abstract

Plankton is the most fundamental component of ocean ecosystems, due to its function at many levels of the oceans food chain. The variations of its distribution are useful indicators for oceanic or climatic events; therefore, the study of plankton distribution is crucial to protect marine ecosystems. Currently, much research is concentrated on the automated recognition of plankton and several imaging-based technologies have been developed for collecting plankton images continuously using underwater image sensors. In this chapter, we propose an automated plankton recognition system, which is based on deep learning methods combined with so-called handcrafted features. The experimental evaluation, carried out on three large publicly-available datasets, demonstrates high classification accuracy of the proposed approach when compared with other classifiers on the same datasets.

Notes

Acknowledgements

We would like to acknowledge the support that NVIDIA provided us through the GPU Grant Program. We used a donated TitanX GPU to train CNNs used in this work.

References

  1. 1.
    Olson, R.J., Sosik, H.M.: A submersible imaging-in-flow instrument to analyze nano-and microplankton: imaging flowcytobot. Limnol. Oceanogr. Methods 5(6), 195–203 (2007)CrossRefGoogle Scholar
  2. 2.
    Cowen, R.K., Guigand, C.M.: In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol. Oceanogr. Methods 6(2), 126–132 (2008)CrossRefGoogle Scholar
  3. 3.
    Gorsky, G., Ohman, M.D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J.B., Cawood, A., Pesant, S., García-Comas, C., Prejger, F.: Digital zooplankton image analysis using the zooscan integrated system. J. Plankton Res. 32(3), 285–303 (2010)CrossRefGoogle Scholar
  4. 4.
    Zhao, F., Lin, F., Seah, H.S.: Binary sipper plankton image classification using random subspace. Neurocomputing 73(10–12), 1853–1860 (2010)CrossRefGoogle Scholar
  5. 5.
    Lee, H., Park, M., Kim, J.: Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning. In: IEEE International Conference on Image Processing (ICIP), pp. 3713–3717, Sept 2016Google Scholar
  6. 6.
    Dai, J., Wang, R., Zheng, H., Ji, G., Qiao, X.: Zooplanktonet: deep convolutional network for zooplankton classification. In: OCEANS 2016, pp. 1–6. Shanghai, April 2016Google Scholar
  7. 7.
    Zheng, H., Wang, R., Yu, Z., Wang, N., Gu, Z., Zheng, B.: Automatic plankton image classification combining multiple view features via multiple kernel learning. BMC Bioinform. 18(238), 1–18 (2017)Google Scholar
  8. 8.
    Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., Chen, T.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)CrossRefGoogle Scholar
  9. 9.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  10. 10.
    Nanni, L., Brahnam, S., Ghidoni, S., Lumini, A.: Bioimage classification with handcrafted and learned features. IEEE/ACM Trans. Comput. Biol. Bioinform., pp. 1–1 (2018)Google Scholar
  11. 11.
    Tang, X., Kenneth Stewart, W., Vincent, L., Huang, H., Marra, M., Gallager, S.M., Davis, C.S.: Automatic plankton image recognition. Artif. Intell. Rev. 12, 177–199 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hu, Q., Davis, C.: Automatic plankton image recognition with co-occurrence matrices and support vector machine. Mar. Ecol. Prog. Ser. 295, 21–31 (2005)CrossRefGoogle Scholar
  13. 13.
    Li, Z., Zhao, F., Liu, J., Qiao, Y.: Pairwise nonparametric discriminant analysis for binary plankton image recognition. IEEE J. Ocean. Eng. 39(4), 695–701 (2014)CrossRefGoogle Scholar
  14. 14.
    Ellen, J., Li, H., Ohman, M.D.: Quantifying california current plankton samples with efficient machine learning techniques. In: OCEANS 2015—MTS/IEEE Washington, pp. 1–9, Oct 2015Google Scholar
  15. 15.
    Chang, L., Wang, R., Zheng, H., Dai, J., Zheng, B.: Phytoplankton feature extraction from microscopic images based on surf-pca. In: OCEANS 2016—Shanghai, pp. 1–4, April 2016Google Scholar
  16. 16.
    Moniruzzaman, M., Islam, S.M.S., Bennamoun, M., Lavery, P.: Deep learning on underwater marine object detection: a survey. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems, pp. 150–160. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  17. 17.
    Py, O., Hong, H., Zhongzhi, S.: Plankton classification with deep convolutional neural networks. In: IEEE Information Technology, Networking, Electronic and Automation Control Conference, pp. 132–136, May 2016Google Scholar
  18. 18.
    Dai, J., Yu, Z., Zheng, H., Zheng, B., Wang, N.: A hybrid convolutional neural network for plankton classification. In: Chen, C.S., Lu, J., Ma, K.K. (eds.) Computer Vision–ACCV 2016 Workshops, pp. 102–114. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  19. 19.
    Awad, A.I., Hassaballah, M.: Image Feature Detectors and Descriptors: Foundations and Applications, vol. 630. Springer (2016)Google Scholar
  20. 20.
    Nanni, L., Brahnam, S., Lumini, A.: A very high performing system to discriminate tissues in mammograms as benign and malignant. Expert Syst. Appl. 39(2), 1968–1971 (2012)CrossRefGoogle Scholar
  21. 21.
    Kannala, J., Rahtu, E.: Bsif: Binarized statistical image features. In: 21st International Conference on Pattern Recognition (ICPR2012), pp. 1363–1366, Nov 2012Google Scholar
  22. 22.
    Nanni, L., Paci, M., Dos Santos, F., Brahnam, S., Hyttinen, J.: Review on Texture Descriptors for Image Classifcation. Nova Science Publisher (2016)Google Scholar
  23. 23.
    Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) Image and Signal Processing, pp. 236–243. Springer, Berlin, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nosaka, R., Fukui, K.: Hep-2 cell classification using rotation invariant co-occurrence among local binary patterns. Pattern Recogn. 47(7), 2428–2436 (2014)CrossRefGoogle Scholar
  27. 27.
    Strandmark, P., Ulén, J., Kahl, F.: Hep-2 staining pattern classification. In: 21st International Conference on Pattern Recognition (ICPR2012), pp. 33–36, Nov 2012Google Scholar
  28. 28.
    Zhu, Z., You, X., Chen, P.C., Tao, D., Ou, W., Jiang, X., Zou, J.: An adaptive hybrid pattern for noise-robust texture analysis. Pattern Recogn. 48(8), 2592–2608 (2015)CrossRefGoogle Scholar
  29. 29.
    Song, T., Li, H., Meng, F., Wu, Q., Cai, J.: Letrist: Locally encoded transform feature histogram for rotation-invariant texture classification. IEEE Trans. Circuits Syst. Video Technol. 28(7), 1565–1579 (2018)CrossRefGoogle Scholar
  30. 30.
    Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel based learning methods. AI Mag. 22(2), 190 (2000)zbMATHGoogle Scholar
  31. 31.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org
  32. 32.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1–9 (2012)Google Scholar
  33. 33.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015Google Scholar
  34. 34.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826. IEEE Computer Society, June 2016Google Scholar
  35. 35.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICRL), pp. 1–14 (2015)Google Scholar
  36. 36.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE Computer Society (2016)Google Scholar
  37. 37.
    Sosik, H.M., Olson, R.J.: Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr. Methods 5(6), 204–216 (2007)CrossRefGoogle Scholar
  38. 38.
    Gonzalez, P., Alvarez, E., Diez, J., Lopez-Urrutia, A., del Coz, J.J.: Validation methods for plankton image classification systems. Limnol. Oceanogr. Methods 15(3), 221–237 (2017)CrossRefGoogle Scholar
  39. 39.
    Landgrebe, T.C.W., Duin, R.P.W.: Approximating the multiclass ROC by pairwise analysis. Pattern Recogn. Lett. 28(13), 1747–1758 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of BolognaCesena (FC)Italy
  2. 2.Department of Information EngineeringUniversity of PaduaPadovaItaly

Personalised recommendations