Advertisement

Clustering and Its Extensions in the Social Media Domain

  • Lei MengEmail author
  • Ah-Hwee Tan
  • Donald C. Wunsch II
Chapter
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Abstract

This chapter summarizes existing clustering and related approaches for the identified challenges as described in Sect.  1.2 and presents the key branches of social media mining applications where clustering holds a potential. Specifically, several important types of clustering algorithms are first illustrated, including clustering, semi-supervised clustering, heterogeneous data co-clustering, and online clustering. Subsequently, Sect. 2.5 presents a review on existing techniques that help decide the value of the predefined number of clusters (required by most clustering algorithms) automatically and highlights the clustering algorithms that do not require such a parameter. It better illustrates the challenge of input parameter sensitivity of clustering algorithms when applied to large and complex social media data. Furthermore, in Sect. 2.6, a survey on several main applications of clustering algorithms to social media mining tasks is offered, including web image organization, multi-modal information fusion, user community detection, user sentiment analysis, social event detection, community question answering, social media data indexing and retrieval, and recommender systems in social networks.

References

  1. 1.
    Ackermann MR, Märtens M, Raupach C, Swierkot K, Lammersen C, Sohler C (2012) Streamkm++: a clustering algorithm for data streams. J Exp Algorithmics (JEA) 17(2.4)Google Scholar
  2. 2.
    Agarwal N, Liu H, Tang L, Yu PS (2012) Modeling blogger influence in a community. Soc Netw Anal Min 2(2):139–162Google Scholar
  3. 3.
    Aichholzer O, Aurenhammer F (1996) Classifying hyperplanes in hypercubes. SIAM J Discret Math 225–232MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ailon N, Jaiswal R, Monteleoni C (2009) Streaming k-means approximation. In: Advances in neural information processing systems, pp 10–18Google Scholar
  5. 5.
    Anderson A, Huttenlocher D, Kleinberg J, Leskovec J (2012) Discovering value from community activity on focused question answering sites: a case study of stack overflow. In: KDD, pp 850–858Google Scholar
  6. 6.
    Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) OPTICS: ordering points to identify the clustering structure. In: ACM SIGMOD international conference on management of data, pp 49–60Google Scholar
  7. 7.
    Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, pp 1027–1035Google Scholar
  8. 8.
    Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks: Membership, growth, and evolution. In: KDD, pp 44–54Google Scholar
  9. 9.
    Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvitskii S (2012) Scalable k-means++. Proc VLDB Endow 5(7):622–633Google Scholar
  10. 10.
    Bandyopadhyay S (2011) Genetic algorithms for clustering and fuzzy clustering. WIREs Data Min Knowl Discov 1(6):524–531Google Scholar
  11. 11.
    Bandyopadhyay S, Saha S (2008) A point symmetry-based clustering technique for automatic evolution of clusters. IEEE Trans Knowl Data Eng 20(11):1441–1457Google Scholar
  12. 12.
    Barbakh W, Fyfe C (2008) Online clustering algorithms. Int J Neural Syst 18(3):185–194Google Scholar
  13. 13.
    Bartfai G (1996) An art-based modular architecture for learning hierarchical clusterings. Neurocomputing 13(1):31–45Google Scholar
  14. 14.
    Becker H, Naaman M, Gravano L (2011) Beyond trending topics: Real-world event identi?cation on twitter. In: Proceedings of international AAAI conference on weblogs and social media, pp 438–441Google Scholar
  15. 15.
    Beitzel SM, Jensen EC, Chowdhury A, Grossman D, Frieder O (2004) Hourly analysis of a very large topically categorized web query log. In: SIGIR, pp 321–328Google Scholar
  16. 16.
    Bekkerman R, Jeon J (2007) Multi-modal clustering for multimedia collections. In: CVPR, pp 1–8Google Scholar
  17. 17.
    Bekkerman R, Sahami M (2006) Semi-supervised clustering using combinatorial mrfs. In: ICML workshop on learning in structured output spacesGoogle Scholar
  18. 18.
    Bekkerman R, Sahami M, Learned-Miller E (2006) Combinatorial markov random fields. In: ECML, pp 30–41Google Scholar
  19. 19.
    Bekkerman R, Scholz M, Viswanathan K (2009) Improving clustering stability with combinatorial mrfs. In: KDD, pp 99–108Google Scholar
  20. 20.
    Bezdek JC, Hathaway R (2002) VAT: A tool for visual assessment of (cluster) tendency. In: Proceedings of international joint conference neural networks, pp 2225–2230Google Scholar
  21. 21.
    Bickel S, Scheffer T (2004) Multi-view clustering. In: ICDM, pp 19–26Google Scholar
  22. 22.
    Bisson G, Grimal C (2012) Co-clustering of multi-view datasets: a parallelizable approach. In: ICDM, pp 828–833Google Scholar
  23. 23.
    Blooma MJ, Chua AYK, Goh DHL (2011) Quadripartite graph-based clustering of questions. In: International conference on information technology: new generations, pp 591–596Google Scholar
  24. 24.
    Cai D, He X, Li Z, Ma W, Wen J (2004) Hierarchical clustering of www image search results using visual, textual and link information. In: Proceedings of ACM multimedia, pp 952–959Google Scholar
  25. 25.
    Cai X, Nie F, Huang H, Kamangar F (2011) Heterogeneous image feature integration via multi-modal spectral clustering. In: CVPR, pp 1977–1984Google Scholar
  26. 26.
    Caicedo JC, BenAbdallah J, González FA, Nasraoui O (2012) Multimodal representation, indexing, automated annotation and retrieval of image collections via non-negative matrix factorization. Neurocomputing 76(1):50–60Google Scholar
  27. 27.
    Caicedo JC, Moreno JG, Niño EA, González FA (2010) Combining visual features and text data for medical image retrieval using latent semantic kernels. In: Proceedings of the international conference on Multimedia information retrieval, pp 359–366Google Scholar
  28. 28.
    Carpenter GA, Grossberg S (1987) ART 2: Self-organization of stable category recognition codes for analog input patterns. Appl Opt 26(23):4919–4930Google Scholar
  29. 29.
    Carpenter GA, Grossberg S (1990) ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures. Neural Netw 3(2):129–152Google Scholar
  30. 30.
    Carpenter GA, Grossberg S (2016) Adaptive resonance theory. Springer, BerlinGoogle Scholar
  31. 31.
    Carpenter GA, Grossberg S, Markuzon N, Reynolds JH, Rosen DB (1992) Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans Neural Netw 3(5):698–713Google Scholar
  32. 32.
    Carpenter GA, Grossberg S, Reynolds J (1991) ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Netw 4(5):565–588Google Scholar
  33. 33.
    Carpenter GA, Grossberg S, Rosen D (1991) ART 2-A: An adaptive resonance algorithm for rapid category learning and recognition. Neural Netw 4:493–504Google Scholar
  34. 34.
    Carpenter GA, Grossberg S, Rosen DB (1991) Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw 759–771Google Scholar
  35. 35.
    Cha M, Haddadi H, Benevenuto F, Gummadi KP (2010) Measuring user influence in twitter: The million follower fallacy. In: Proceedings of international AAAI conference on weblogs and social media, pp 10–17Google Scholar
  36. 36.
    Chandrika P, Jawahar C (2010) Multi modal semantic indexing for image retrieval. In: CIVR, pp 342–349Google Scholar
  37. 37.
    Chandrika P, Jawahar CV (2010) Multi modal semantic indexing for image retrieval. In: CIVR, pp 342–349Google Scholar
  38. 38.
    Charikar M, O’Callaghan L, Panigrahy R (2003) Better streaming algorithms for clustering problems. In: Proceedings of the annual ACM symposium on theory of computing, pp 30–39Google Scholar
  39. 39.
    Chaudhuri K, Kakade SM, Livescu K, Sridharan K (2009) Multi-view clustering via canonical correlation analysis. In: ICML, pp 129–136Google Scholar
  40. 40.
    Chen C, Luo J, Parker KJ (1998) Image segmentation via adaptive K-means clustering and knowledge-based morphological operations with biomedical applications. IEEE Trans Image Process 7(12):1673–1683Google Scholar
  41. 41.
    Chen L, Roy A (2009) Event detection from flickr data through wavelet-based spatial analysis. In: CIKM, pp 523–532Google Scholar
  42. 42.
    Chen L, Xu D, Tsang IW, Luo J (2012) Tag-based image retrieval improved by augmented features and group-based refinement. IEEE Trans Multimed (T-MM) 1057–1067Google Scholar
  43. 43.
    Chen Q, Wang G, Tan CL (2012) Web image organization and object discovery by actively creating visual clusters through crowdsourcing. In: Proceedings of international conference on tools with artificial intelligence, 419–427Google Scholar
  44. 44.
    Chen Y, Dong M, Wan W (2007) Image co-clustering with multi-modality features and user feedbacks. In: MM, pp 689–692Google Scholar
  45. 45.
    Chen Y, Rege M, Dong M, Hua J (2007) Incorporating user provided constraints into document clustering. In: ICDM, pp 103–112Google Scholar
  46. 46.
    Chen Y, Tu L (2007) Density-based clustering for real-time stream data. In: Proceedings of the ACM SIGKDD international conference on Knowledge discovery and data mining, pp 133–142Google Scholar
  47. 47.
    Chen Y, Wang L, Dong M (2010) Non-negative matrix factorization for semisupervised heterogeneous data coclustering. TKDE 22(10):1459–1474Google Scholar
  48. 48.
    De Lathauwer L, De Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21(4):1253–1278MathSciNetzbMATHGoogle Scholar
  49. 49.
    Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci 41:391–407Google Scholar
  50. 50.
    Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc, Ser B 39(1):1–38MathSciNetzbMATHGoogle Scholar
  51. 51.
    Dhillon IS, Guan Y, Kulis B (2004) Kernel k-means: spectral clustering and normalized cuts. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 551–556Google Scholar
  52. 52.
    Ding C, Li T, Peng W, Park H (2006) Orthogonal nonnegative matrix tri-factorizations for clustering. In: Proceedings of ACM SIGKDD international conference knowledge discovery and data mining, pp 126–135Google Scholar
  53. 53.
    Ding H, Liu J, Lu H (2008) Hierarchical clustering-based navigation of image search results. In: Proceedings of ACM multimedia, pp 741–744Google Scholar
  54. 54.
    Dong Y, Tang J, Wu S, Tian J, Chawla NV, Rao J, Cao H (2012) Link prediction and recommendation across heterogeneous social networks. In: ICDM, pp 181–190Google Scholar
  55. 55.
    Drost I, Bickel S, Scheffer T (2006) Discovering communities in linked data by multi-view clustering. In: From data and information analysis to knowledge engineering, pp 342–349Google Scholar
  56. 56.
    Escalante HJ, Montes M, Sucar E (2012) Multimodal indexing based on semantic cohesion for image retrieval. Inf Retr 15(1):1–32Google Scholar
  57. 57.
    Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp 226–231Google Scholar
  58. 58.
    Faber V (1994) Clustering and the continuous k-means algorithm. Los Alamos Sci 22:138–144Google Scholar
  59. 59.
    Fasel B, Monay F, Gatica-Perez D (2004) Latent semantic analysis of facial action codes for automatic facial expression recognition. In: Proceedings of international conference on multimedia information retrieval, pp 181–188Google Scholar
  60. 60.
    Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315:972–976MathSciNetzbMATHGoogle Scholar
  61. 61.
    Fu Z, Ip HHS, Lu H, Lu Z (2011) Multi-modal constraint propagation for heterogeneous image clustering. In: MM, pp 143–152Google Scholar
  62. 62.
    Fujiwara Y, Irie G, Kitahara T (2011) Fast algorithm for affinity propagation. In: IJCAI, pp 2238–2243Google Scholar
  63. 63.
    Gao B, Liu T, Qin T, Zheng X, Cheng Q, Ma W (2005) Web image clustering by consistent utilization of visual features and surrounding texts. Proc ACM Multimed 112–121Google Scholar
  64. 64.
    Gao B, Liu TY, Zheng X, Cheng QS, Ma WY (2005) Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In: Proceedings of international conference on knowledge discovery and data mining, pp 41–50Google Scholar
  65. 65.
    Golub GH, Loan CFV (1996) Matrix computations. Johns Hopkins University PressGoogle Scholar
  66. 66.
    Gower J, Ross G (1969) Minimum spanning trees and single linkage clustering analysis. J R Stat Soc Ser C 595–616Google Scholar
  67. 67.
    Grossberg S (1980) How does a brain build a cognitive code. Psychol Rev 87(1):1–51Google Scholar
  68. 68.
    Gu Q, Zhou J (2009) Co-clustering on manifolds. In: KDD, pp 359–367Google Scholar
  69. 69.
    Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L (2003) Clustering data streams: theory and practice. IEEE Trans Knowl Data Eng 15(3):515–528Google Scholar
  70. 70.
    Gundecha P, Liu H (2012) Mining social media: A brief introduction. Tutor Oper ResGoogle Scholar
  71. 71.
    Habibi M, Popescu-Belis A (2015) Keyword extraction and clustering for document recommendation in conversations. IEEE/ACM Trans Audio, Speech Lang Process (TASLP) 23(4):746–759Google Scholar
  72. 72.
    Harabagiu S, Lacatusu F (2010) Using topic themes for multi-document summarization. ACM Trans Inf Syst 28(3):1–47Google Scholar
  73. 73.
    He X, Liao L, Zhang H, Nie L, Hu X, Chua TS (2017) Neural collaborative filtering. In: Proceedings of the 26th international conference on world wide web, pp 173–182. International World Wide Web Conferences Steering CommitteeGoogle Scholar
  74. 74.
    He X, Zhang H, Kan MY, Chua TS (2016) Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval, pp 549–558. ACMGoogle Scholar
  75. 75.
    Hong R, Wang M, Li G, Nie L, Zha ZJ, Chua TS (2012) Multimedia question answering. IEEE Trans MultiMed 19(4):72–78Google Scholar
  76. 76.
    Hsu C, Caverlee J, Khabiri E (2011) Hierarchical comments-based clustering. In: Proceedings ACM SAC, pp 1130–1137Google Scholar
  77. 77.
    Hu X, Sun N, Zhang C, Chua TS (2009) Exploiting internal and external semantics for the clustering of short texts using world knowledge. In: Proceedings of ACM conference on information and knowledge management, pp 919–928Google Scholar
  78. 78.
    Hu X, Tang J, Gao H, Liu H (2013) Unsupervised sentiment analysis with emotional signals. In: WWW, pp 607–618Google Scholar
  79. 79.
    Jadhav SL, Mali MMP (2016) Pre-recommendation clustering and review based approach for collaborative filtering based movie recommendation. Int J Inf Technol Comput Sci (IJITCS) 8(7):72–80Google Scholar
  80. 80.
    Ji X, Xu W (2006) Document clustering with prior knowledge. In: Proceedings of international ACM SIGIR conference research and development in information retrieval, pp 405–412Google Scholar
  81. 81.
    Jiang T, Tan AH (2006) Discovering image-text associations for cross-media web information fusion. In: PKDD, pp 561–568Google Scholar
  82. 82.
    Jiang T, Tan AH (2009) Learning image-text associations. IEEE Trans Knowl Data Eng 21(2):161–177Google Scholar
  83. 83.
    Jing F, Wang C, Yao Y, Zhang L, Ma W (2006) Igroup: web image search results clustering. Proc. ACM Multimed 377–384Google Scholar
  84. 84.
    Joachims T (2003) Transductive learning via spectral graph partitioning. In: ICM, pp 290–297Google Scholar
  85. 85.
    Kalantidis Y, Kennedy L, Nguyen H, Mellina C, Shamma DA (2016) Loh and behold: Web-scale visual search, recommendation and clustering using locally optimized hashing. In: European conference on computer vision, pp 702–718. Springer, BerlinGoogle Scholar
  86. 86.
    Kim D, Park C, Oh J, Lee S, Yu H (2016) Convolutional matrix factorization for document context-aware recommendation. In: Proceedings of the 10th ACM conference on recommender systems, pp 233–240. ACMGoogle Scholar
  87. 87.
    Ko J, Si L, Nyberg E (2010) Combining evidence with a probabilistic framework for answer ranking and answer merging in question answering. Inf Process Manag 46(5):541–554Google Scholar
  88. 88.
    Konstas I, Stathopoulos V, Jose JM (2009) On social networks and collaborative recommendation. In: Proceedings of international ACM SIGIR conference on research and development in information retrieval, pp 195–202Google Scholar
  89. 89.
    Kothari R, Pitts D (1999) On finding the number of clusters. Pattern Recognit Lett 20(4):405–416Google Scholar
  90. 90.
    Kriegel HP, Kroger P, Sander J, Zimek A (2011) Density-based clustering. WIREs Data Min Knowl Discov 1(3):231–240Google Scholar
  91. 91.
    Kulis B, Basu S, Dhillon I, Mooney R (2005) Semi-supervised graph clustering: A kernel approach. Proc Int Conf Mach Learn 457–464Google Scholar
  92. 92.
    Kumar A, III HD (2011) A co-training approach for multi-view spectral clustering. In: ICML, pp 393–400Google Scholar
  93. 93.
    Kwok C, Etzioni O, Weld DS (2001) Scaling question answering to the web. ACM Trans Inf Syst (TOIS) 19(3):242–262Google Scholar
  94. 94.
    Lee D, Seung H (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791zbMATHGoogle Scholar
  95. 95.
    Lee JS, Olafsson S (2013) A meta-learning approach for determining the number of clusters with consideration of nearest neighbors. Inf Sci 232:208–224MathSciNetGoogle Scholar
  96. 96.
    Leuken RHV, Garcia L, Olivares X, Zwol RV (2009) Visual diversification of image search results. In: WWW, pp 341–350Google Scholar
  97. 97.
    Leung KWT, Ng W, Lee DL (2008) Personalized concept-based clustering of search engine queries. IEEE Trans Knowl Data Eng 20(11):1505–1518Google Scholar
  98. 98.
    Leung Y, Zhang JS, Xu ZB (2000) Clustering by scale-space filtering. IEEE Trans Pattern Anal Mach Intell 22(12):1394–1410Google Scholar
  99. 99.
    Li M, Xue XB, Zhou ZH (2009) Exploiting multi-modal interactions: A unified framework. In: IJCAI, pp 1120–1125Google Scholar
  100. 100.
    Li M, Xue XB, Zhou ZH (2009) Exploiting multi-modal interactions: A unified framework. In: IJCAI, pp 1120–1125Google Scholar
  101. 101.
    Li MJ, Ng MK, Cheung Y, Huang ZX (2008) Agglomerative fuzzy k-means clustering algorithm with selection of number of clusters. IEEE Trans Knowl Data Eng 20(11):1519–1534Google Scholar
  102. 102.
    Li R, Lei KH, Khadiwala R, Chang KCC (2012) Tedas: A twitter-based event detection and analysis system. Int Conf Data Eng 1273–1276Google Scholar
  103. 103.
    Liang J, Zhao X, Li D, Cao F, Dang C (2012) Determining the number of clusters using information entropy for mixed data. Pattern Recognit 45(6):2251–2265zbMATHGoogle Scholar
  104. 104.
    Liao CL, Lee SJ (2016) A clustering based approach to improving the efficiency of collaborative filtering recommendation. Electron Commer Res Appl 18:1–9Google Scholar
  105. 105.
    Liberty E, Sriharsha R, Sviridenko M (2016) An algorithm for online k-means clustering. In: 2016 Proceedings of the eighteenth workshop on algorithm engineering and experiments (ALENEX), pp 81–89. SIAMGoogle Scholar
  106. 106.
    Lienhart R, Romberg S, Hörster E (2009) Multilayer pLSA for multimodal image retrieval. In: Proceedings of the ACM international conference on image and video retrievalGoogle Scholar
  107. 107.
    Liu B (2010) Sentiment analysis and subjectivity. Handbook of natural language processing. CRC Press, pp 627–666Google Scholar
  108. 108.
    Liu W, Chang S (2009) Robust multi-class transductive learning with graphs. In: CVPR, pp 381–388Google Scholar
  109. 109.
    Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137MathSciNetzbMATHGoogle Scholar
  110. 110.
    Long B, Wu X, Zhang Z, Yu PS (2006) Spectral clustering for multi-type relational data. In: ICML, pp 585–592Google Scholar
  111. 111.
    Macropol K, Singh A (2010) Scalable discovery of best clusters on large graphs. In: VLDB Endowment, pp 693–702Google Scholar
  112. 112.
    Massey L (2005) Real-world text clustering with adaptive resonance theory neural networks. In: Proceedings of international joint conference on neural networks, pp 2748–2753Google Scholar
  113. 113.
    McNicholas PD, Murphy TB (2010) Model-based clustering of microarray expression data via latent gaussian mixture models. Bioinformatics 26(21):2705–2712Google Scholar
  114. 114.
    Meng L, Tan AH (2012) Semi-supervised hierarchical clustering for personalized web image organization. In: Proceedings of international joint conference on neural networks (IJCNN), pp 1–8Google Scholar
  115. 115.
    Meng L, Tan AH (2014) Community discovery in social networks via heterogeneous link association and fusion. SIAM Int Conf Data Min (SDM) 803–811Google Scholar
  116. 116.
    Meng L, Tan AH, Wunsch DC (2016) Adaptive scaling of cluster boundaries for large-scale social media data clustering. IEEE Trans Neural Netw Learn Syst 27(12):2656–2669MathSciNetGoogle Scholar
  117. 117.
    Meng L, Tan AH, Xu D (2014) Semi-supervised heterogeneous fusion for multimedia data co-clustering. IEEE Trans Knowl Data Eng 26(9):2293–2306Google Scholar
  118. 118.
    Messina A, Montagnuolo M (2009) A generalised cross-modal clustering method applied to multimedia news semantic indexing and retrieval. In: WWW, pp 321–330Google Scholar
  119. 119.
    Moradi P, Ahmadian S, Akhlaghian F (2015) An effective trust-based recommendation method using a novel graph clustering algorithm. Phys A: Stat Mech Its Appl 436:462–481Google Scholar
  120. 120.
    Moshtaghi M, Leckie C, Bezdek JC (2016) Online clustering of multivariate time-series. In: Proceedings of the 2016 SIAM international conference on data mining, pp 360–368. SIAMGoogle Scholar
  121. 121.
    Mumtaz A, Coviello E, Lanckriet GRG, Chan AB (2013) Clustering dynamic textures with the hierarchical EM algorithm for modeling video. IEEE Trans Pattern Anal Mach Intell 35(7):1606–1621Google Scholar
  122. 122.
    Nguyen L, Woon K, Tan AH (2008) A self-organizing neural model for multimedia information fusion. Int Conf Inf Fusion 1–7Google Scholar
  123. 123.
    Nock R, Nielsen F (2006) On weighting clustering. IEEE Trans Pattern Anal Mach Intell 28(8), 1–13Google Scholar
  124. 124.
    Ozsoy MG, Cicekli I, Alpaslan FN (2010) Text summarization of turkish texts using latent semantic analysis. Proc Int Conf Comput Linguist 869–876Google Scholar
  125. 125.
    Paltoglou G, Thelwall M (2012) Twitter, myspace, digg: Unsupervised sentiment analysis in social media. ACM Trans Intell Syst Technol (TIST) 3(4):1–19Google Scholar
  126. 126.
    Papadopoulos S, Kompatsiaris Y, Vakali A, Spyridonos P (2012) Community detection in social media. Data Min Knowl Discov 24(3):515–554Google Scholar
  127. 127.
    Papadopoulos S, Zigkolis C, Kompatsiaris Y, Vakali A (2011) Cluster-based landmark and event detection for tagged photo collections. IEEE Multimed Mag 18(1):52–63Google Scholar
  128. 128.
    Pei T, Jasra A, Hand D, Zhu AX, Zhou C (2009) DECODE: A new method for discovering clusters of different densities in spatial data. Data Min Knowl Discov 18(3):337–369MathSciNetGoogle Scholar
  129. 129.
    Petkos G, Papadopoulos S, Kompatsiaris Y (2012) Social event detection using multimodal clustering and integrating supervisory signals. In: ICMR, pp 23:1–23:8Google Scholar
  130. 130.
    Pham TT, Maillot NE, Lim JH, Chevallet JP (2007) Latent semantic fusion model for image retrieval and annotation. In: Proceedings of international conference on information and knowledge management, pp 439–444Google Scholar
  131. 131.
    Pirasteh P, Hwang D, Jung JJ (2015) Exploiting matrix factorization to asymmetric user similarities in recommendation systems. Knowl-Based Syst 83:51–57Google Scholar
  132. 132.
    Qin Y, Priebe CE (2013) Maximum lq-likelihood estimation via the expectation-maximization algorithm: A robust estimation of mixture models. J Am Stat Assoc 108(503):914–928zbMATHGoogle Scholar
  133. 133.
    Qiu G (2004) Clustering and the continuous k-means algorithm. Proc Int Conf Pattern Recognit 991–994Google Scholar
  134. 134.
    Rasiwasia N, Pereira J (2010) A new approach to cross-modal multimedia retrieval. In: MM, pp 251–260Google Scholar
  135. 135.
    Rege M, Dong M, Fotouhi F (2006) Co-clustering documents and words using bipartite isoperimetric graph partitioning. In: Proceedingd of international conference on data mining, pp 532–541Google Scholar
  136. 136.
    Rege M, Dong M, Hua J (2008) Graph theoretical framework for simultaneously integrating visual and textual features for efficient web image clustering. In: Proceedings of international conference on world wide web, pp 317–326Google Scholar
  137. 137.
    Ren X, Liu J, Yu X, Khandelwal U, Gu Q, Wang L, Han J (2014) Cluscite: Effective citation recommendation by information network-based clustering. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 821–830. ACMGoogle Scholar
  138. 138.
    Ricci F, Rokach L, Shapira B (2015) Recommender systems: introduction and challenges. In: Recommender systems handbook, pp 1–34. Springer, Berlin (2015)zbMATHGoogle Scholar
  139. 139.
    Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496Google Scholar
  140. 140.
    Sahoo N, Callan J, Krishnan R, Duncan G, Padman R (2006) Incremental hierarchical clustering of text documents. In: Proceedings of ACM international conference on Information and knowledge management, pp 357–366Google Scholar
  141. 141.
    Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of international conference on world wide web, pp 851–860Google Scholar
  142. 142.
    Sander J, Ester M, Kriegel HP, Xu X (1998) Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Min Knowl Discov 2(2):169–194Google Scholar
  143. 143.
    Satuluri V, Parthasarathy S, Ruan Y (2011) Local graph sparsification for scalable clustering. In: SIGMOD, pp 721–732Google Scholar
  144. 144.
    Schtze H, Silverstein C (1997) Projections for efficient document clustering. In: proceedings of SIGIR, pp 74–81Google Scholar
  145. 145.
    Shental N, Hertz T, Weinshall D, Pavel M (2002) Adjustment learning and relevant component analysis. In: ECCV, pp 776–792Google Scholar
  146. 146.
    Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905Google Scholar
  147. 147.
    Shi X, Fan W, Yu PS (2010) Efficient semi-supervised spectral co-clustering with constraints. In: ICDM, pp 532–541Google Scholar
  148. 148.
    Silva JA, Faria ER, Barros RC, Hruschka ER, de Carvalho AC, Gama J (2013) Data stream clustering: a survey. ACM Comput Surv (CSUR) 46(1). No. 13zbMATHGoogle Scholar
  149. 149.
    Sledge I, Huband J, Bezdek JC (2008) (automatic) cluster count extraction from unlabeled datasets. In: Fifth international conference fuzzy systems and knowledge discovery (FSKD), pp 3–13Google Scholar
  150. 150.
    Sriram B, Fuhry D, Demir E, Ferhatosmanoglu H, Demirbas M (2010) Short text classification in twitter to improve information filtering. In: International ACM SIGIR conference on research and development in information retrieval, pp 841–842Google Scholar
  151. 151.
    Steinberger J, Jezek K (2004) Using latent semantic analysis in text summarization and summary evaluation. In: Proceedings of ISIM, pp 93–100Google Scholar
  152. 152.
    Su JH, Wang BW, Hsu TY, Chou CL, Tseng VS (2010) Multi-modal image retrieval by integrating web image annotation, concept matching and fuzzy ranking techniques. Int J Fuzzy Syst 12(2):136–149Google Scholar
  153. 153.
    Sugar CA, James GM (2003) Finding the number of clusters in a data set: an information theoretic approach. J Am Stat Assoc 98(463):750–763zbMATHGoogle Scholar
  154. 154.
    Sun H, Wang S, Jiang Q (2004) FCM-based model selection algorithms for determining the number of clusters. Pattern Recognit 37(10):2027–2037zbMATHGoogle Scholar
  155. 155.
    Tan AH, Carpenter GA, Grossberg S (2007) Intelligence through interaction: Towards a unified theory for learning. LNCS 4491:1094–1103Google Scholar
  156. 156.
    Tan AH, Ong HL, Pan H, Ng J, Li Q (2004) Towards personalised web intelligence. Knowl Inf Syst 6(5):595–616Google Scholar
  157. 157.
    Tang L, Wang X, Liu H (2009) Uncovering groups via heterogeneous interaction analysis. In: ICDM, pp 503–512Google Scholar
  158. 158.
    Tang W, Lu Z, Dhillon IS (2009) Clustering with multiple graphs. In: ICDM, pp 1016–1021Google Scholar
  159. 159.
    Tran TN, Wehrens R, Buydens LMC (2006) KNN-kernel density-based clustering for high-dimensional multivariate data. Comput Stat Data Anal 51(2):513–525MathSciNetzbMATHGoogle Scholar
  160. 160.
    Wang D, Zhu S, Li T, Chi Y, Gong Y (2011) Integrating document clustering and multidocument summarization. ACM Trans Knowl Discov Data 5(3):1–26Google Scholar
  161. 161.
    Wang L, Leckie C, Ramamohanarao K, Bezdek J (2012) Automatically determining the number of clusters in unlabeled data sets. IEEE Trans Knowl Data Eng 21(3):335–350Google Scholar
  162. 162.
    Wang W, Zhang Y (2007) On fuzzy cluster validity indices. Fuzzy Sets Syst 158(19):2095–2117MathSciNetzbMATHGoogle Scholar
  163. 163.
    West JD, Wesley-Smith I, Bergstrom CT (2016) A recommendation system based on hierarchical clustering of an article-level citation network. IEEE Trans Big Data 2(2):113–123Google Scholar
  164. 164.
    Whang JJ, Sui X, Sun Y, Dhillon IS (2012) Scalable and memory-efficient clustering of large-scale social networks. In: ICDM, pp 705–714Google Scholar
  165. 165.
    Wu B, Zhou X, Jin Q (2015) Participatory information search and recommendation based on social roles and networks. Multimed Tools Appl 74(14):5173–5188Google Scholar
  166. 166.
    Wu Z, Leahy R (1993) An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Trans Pattern Anal Mach Intell 15(11):1101–1113Google Scholar
  167. 167.
    Xing E, Ng A, Jordan M, Russell S (2003) Distance metric learning with application to clustering with side-information. In: NIPS, pp 505–512Google Scholar
  168. 168.
    Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678Google Scholar
  169. 169.
    Xu R, Wunsch D (2008) Clustering, vol 10. Wiley, New YorkGoogle Scholar
  170. 170.
    Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization. In: Proceedings of SIGIR conference on Research and development in informaion retrieval, pp 268–273Google Scholar
  171. 171.
    Jia JY, Wang CZ, Hua XS (2008) Finding image exemplars using fast sparse affinity propagation. In: ACM MM, pp 639–642Google Scholar
  172. 172.
    Yan H, Chen KK, Liu L, Bae J (2009) Determining the best k for clustering transactional datasets: A coverage density-based approach. Data Knowl Eng 68(1):28–48Google Scholar
  173. 173.
    Yang J, Leskovec J (2012) Defining and evaluating network communities based on ground-truth. In: SDM, pp 745–754Google Scholar
  174. 174.
    Yang Y, Chawla N, Sun Y, Han J (2012) Predicting links in multi-relational and heterogeneous networks. In: ICDM, pp 755–764Google Scholar
  175. 175.
    Yin J, Wang J (2016) A text clustering algorithm using an online clustering scheme for initialization. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1995–2004. ACMGoogle Scholar
  176. 176.
    Zamani H, Croft WB (2018) Joint modeling and optimization of search and recommendation. arXiv:1807.05631
  177. 177.
    Zhang K, Lo D, Lim EP, Prasetyo PK (2013) Mining indirect antagonistic communities from social interactions. Knowl Inf Syst 35(3):553–583Google Scholar
  178. 178.
    Zhang Y, Chen M, Huang D, Wu D, Li Y (2017) idoctor: Personalized and professionalized medical recommendations based on hybrid matrix factorization. Futur Gener Comput Syst 66:30–35Google Scholar
  179. 179.
    Zhang Z, Nasraoui O (2006) Mining search engine query logs for query recommendation. In: WWW, pp 1039–1040Google Scholar
  180. 180.
    Zhao R, Grosky W (2002) Narrowing the semantic gap improved text-based web document retrieval using visual features. IEEE Trans Multimed pp 189–200Google Scholar
  181. 181.
    Zhou D, Burges CJC (2007) Spectral clustering and transductive learning with multiple views. In: ICM, pp 1159–1166Google Scholar
  182. 182.
    Zhu L, Galstyan A, Cheng J, Lerman K (2014) Tripartite graph clustering for dynamic sentiment analysis on social media. In: SIGMOD, pp 1531–1542Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NTU-UBC Research Center of Excellence in Active Living for the Elderly (LILY)Nanyang Technological UniversitySingaporeSingapore
  2. 2.School of Computer Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Applied Computational Intelligence LaboratoryMissouri University of Science and TechnologyRollaUSA

Personalised recommendations