Preclinical Multimodality Imaging and Image Fusion in Cardiovascular Disease

  • James T. ThackerayEmail author


The development of more specific molecular imaging probes can provide precise physiologic data, but lack of clear anatomic localization can complicate image interpretation. The growth of multimodality imaging cameras facilitates the combination of anatomic imaging (computed tomography, cardiac magnetic resonance) with physiologic imaging (positron emission tomography, single-photon emission computed tomography). Fusion of images obtained by these distinct modalities enables clear localization of the radiotracer signal, which can be used to monitor disease progression or guide therapeutic intervention. As more targeted imaging agents are developed, the need to localize the signal in the absence of myocardial contours grows in importance. Numerous techniques and software packages have been developed to seamlessly fuse images for coregistration and interpretation. Here, we will explore the approaches for image fusion in preclinical cardiac imaging, with particular attention to merging anatomic and physiologic image acquisition, combination of multiple tracers targeted to distinct physiologic processes, and practical application in preclinical cardiovascular disease models.


  1. 1.
    Jaffer FA, Libby P, Weissleder R. Molecular imaging of cardiovascular disease. Circulation. 2007;116(9):1052–61.CrossRefGoogle Scholar
  2. 2.
    Feher A, Sinusas AJ. Quantitative assessment of coronary microvascular function: dynamic single-photon emission computed tomography, positron emission tomography, ultrasound, computed tomography, and magnetic resonance imaging. Circ Cardiovasc Imaging. 2017;10(8).Google Scholar
  3. 3.
    Tragardh E, Hesse B, Knuuti J, Flotats A, Kaufmann PA, Kitsiou A, et al. Reporting nuclear cardiology: a joint position paper by the European Association of Nuclear Medicine (EANM) and the European Association of Cardiovascular Imaging (EACVI). Eur Heart J Cardiovasc Imaging. 2015;16(3):272–9.CrossRefGoogle Scholar
  4. 4.
    Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging. 2003;2(3):131–7.CrossRefGoogle Scholar
  5. 5.
    Das NM, Hatsell S, Nannuru K, Huang L, Wen X, Wang L, et al. In vivo quantitative microcomputed tomographic analysis of vasculature and organs in a normal and diseased mouse model. PLoS One. 2016;11(2):e0150085.CrossRefGoogle Scholar
  6. 6.
    Yan D, Zhang Z, Luo Q, Yang X. A novel mouse segmentation method based on dynamic contrast enhanced micro-CT images. PLoS One. 2017;12(1):e0169424.CrossRefGoogle Scholar
  7. 7.
    Rubeaux M, Joshi NV, Dweck MR, Fletcher A, Motwani M, Thomson LE, et al. Motion correction of 18F-NaF PET for imaging coronary atherosclerotic plaques. J Nucl Med. 2016;57(1):54–9.CrossRefGoogle Scholar
  8. 8.
    Karlsen OT, Verhagen R, Bovee WM. Parameter estimation from Rician-distributed data sets using a maximum likelihood estimator: application to T1 and perfusion measurements. Magn Reson Med. 1999;41(3):614–23.CrossRefGoogle Scholar
  9. 9.
    Thackeray JT, Bankstahl JP, Wang Y, Korf-Klingebiel M, Walte A, Wittneben A, et al. Targeting post-infarct inflammation by PET imaging: comparison of (68)Ga-citrate and (68)Ga-DOTATATE with (18)F-FDG in a mouse model. Eur J Nucl Med Mol Imaging. 2015;42(2):317–27.CrossRefGoogle Scholar
  10. 10.
    Thackeray JT, Bankstahl JP, Wang Y, Wollert KC, Bengel FM. Targeting amino acid metabolism for molecular imaging of inflammation early after myocardial infarction. Theranostics. 2016;6(11):1768–79.CrossRefGoogle Scholar
  11. 11.
    Lamoureux M, Thorn S, Dumouchel T, Renaud JM, Klein R, Mason S, et al. Uniformity and repeatability of normal resting myocardial blood flow in rats using [13N]-ammonia and small animal PET. Nucl Med Commun. 2012;33(9):917–25.CrossRefGoogle Scholar
  12. 12.
    Thackeray JT, deKemp RA, Beanlands RS, DaSilva JN. Early diabetes treatment does not prevent sympathetic dysinnervation in the streptozotocin diabetic rat heart. J Nucl Cardiol. 2014;21(4):829–41.CrossRefGoogle Scholar
  13. 13.
    Shekhar R, Walimbe V, Raja S, Zagrodsky V, Kanvinde M, Wu G, et al. Automated 3-dimensional elastic registration of whole-body PET and CT from separate or combined scanners. J Nucl Med. 2005;46(9):1488–96.PubMedGoogle Scholar
  14. 14.
    Suh JW, Kwon OK, Scheinost D, Sinusas AJ, Cline GW, Papademetris X. CT-PET weighted image fusion for separately scanned whole body rat. Med Phys. 2012;39(1):533–42.CrossRefGoogle Scholar
  15. 15.
    Khmelinskii A, Groen HC, Baiker M, de Jong M, Lelieveldt BP. Segmentation and visual analysis of whole-body mouse skeleton microSPECT. PLoS One. 2012;7(11):e48976.CrossRefGoogle Scholar
  16. 16.
    Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59(2):153–63.CrossRefGoogle Scholar
  17. 17.
    Dogdas B, Stout D, Chatziioannou AF, Leahy RM. Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol. 2007;52(3):577–87.CrossRefGoogle Scholar
  18. 18.
    Thorn SL, deKemp RA, Dumouchel T, Klein R, Renaud JM, Wells RG, et al. Repeatable noninvasive measurement of mouse myocardial glucose uptake with 18F-FDG: evaluation of tracer kinetics in a type 1 diabetes model. J Nucl Med. 2013;54(9):1637–44.CrossRefGoogle Scholar
  19. 19.
    Matsunari I, Miyazaki Y, Kobayashi M, Nishi K, Mizutani A, Kawai K, et al. Performance evaluation of the eXplore speCZT preclinical imaging system. Ann Nucl Med. 2014;28(5):484–97.CrossRefGoogle Scholar
  20. 20.
    O'Neill AS, Terry SY, Brown K, Meader L, Wong AM, Cooper JD, et al. Non-invasive molecular imaging of inflammatory macrophages in allograft rejection. EJNMMI Res. 2015;5(1):69.CrossRefGoogle Scholar
  21. 21.
    Pissarek M, Meyer-Kirchrath J, Hohlfeld T, Vollmar S, Oros-Peusquens AM, Flogel U, et al. Targeting murine heart and brain: visualisation conditions for multi-pinhole SPECT with (99m)Tc- and (123)I-labelled probes. Eur J Nucl Med Mol Imaging. 2009;36(9):1495–509.CrossRefGoogle Scholar
  22. 22.
    Di Carli MF, Asgarzadie F, Schelbert HR, Brunken RC, Rokhsar S, Maddahi J. Relation of myocardial perfusion at rest and during pharmacologic stress to the PET patterns of tissue viability in patients with severe left ventricular dysfunction. J Nucl Cardiol. 1998;5(6):558–66.CrossRefGoogle Scholar
  23. 23.
    Luisi AJ Jr, Suzuki G, Dekemp R, Haka MS, Toorongian SA, Canty JM Jr, et al. Regional 11C-hydroxyephedrine retention in hibernating myocardium: chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med. 2005;46(8):1368–74.PubMedGoogle Scholar
  24. 24.
    Yukinaka M, Nomura M, Ito S, Nakaya Y. Mismatch between myocardial accumulation of 123I-MIBG and 99mTc-MIBI and late ventricular potentials in patients after myocardial infarction: association with the development of ventricular arrhythmias. Am Heart J. 1998;136(5):859–67.CrossRefGoogle Scholar
  25. 25.
    Thackeray JT, Derlin T, Haghikia A, Napp LC, Wang Y, Ross TL, et al. Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC Cardiovasc Imaging. 2015;8(12):1417–26.CrossRefGoogle Scholar
  26. 26.
    Higuchi T, Anton M, Saraste A, Dumler K, Pelisek J, Nekolla SG, et al. Reporter gene PET for monitoring survival of transplanted endothelial progenitor cells in the rat heart after pretreatment with VEGF and atorvastatin. J Nucl Med. 2009;50(11):1881–6.CrossRefGoogle Scholar
  27. 27.
    Martin EB, Williams A, Richey T, Stuckey A, Heidel RE, Kennel SJ, et al. Comparative evaluation of p5+14 with SAP and peptide p5 by dual-energy SPECT imaging of mice with AA amyloidosis. Sci Rep. 2016;6:22695.CrossRefGoogle Scholar
  28. 28.
    Perin EC, Tian M, Marini FC 3rd, Silva GV, Zheng Y, Baimbridge F, et al. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model. PLoS One. 2011;6(9):e22949.CrossRefGoogle Scholar
  29. 29.
    Caobelli F, Wollenweber T, Bavendiek U, Kuhn C, Schutze C, Geworski L, et al. Simultaneous dual-isotope solid-state detector SPECT for improved tracking of white blood cells in suspected endocarditis. Eur Heart J. 2017;38(6):436–43.PubMedGoogle Scholar
  30. 30.
    Thackeray JT, Korf-Klingebiel M, Wang Y, Kustikova OS, Bankstahl JP, Wollert KC, et al. Non-invasive tracking of endogenous bone marrow cell recruitment after myocardial infarction in mice (Abstract). Circulation. 2015;132:A17146.Google Scholar
  31. 31.
    Buscher K, Judenhofer MS, Kuhlmann MT, Hermann S, Wehrl HF, Schafers KP, et al. Isochronous assessment of cardiac metabolism and function in mice using hybrid PET/MRI. J Nucl Med. 2010;51(8):1277–84.CrossRefGoogle Scholar
  32. 32.
    Weissler B, Gebhardt P, Dueppenbecker PM, Wehner J, Schug D, Lerche CW, et al. A digital preclinical PET/MRI insert and initial results. IEEE T Med Imaging. 2015;34(11):2258–70.CrossRefGoogle Scholar
  33. 33.
    Nieman BJ, Szulc KU, Turnbull DH. Three-dimensional, in vivo MRI with self-gating and image coregistration in the mouse. Magn Reson Med. 2009;61(5):1148–57.CrossRefGoogle Scholar
  34. 34.
    Hatt CR, Stanton D, Parthasarathy V, Jain AK, Raval AN. A method for measuring the accuracy of multi-modal image fusion system for catheter-based cardiac interventions using a novel motion enabled targeting phantom. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6260–4.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Jin H, Yang H, Liu H, Zhang Y, Zhang X, Rosenberg AJ, et al. A promising carbon-11-labeled sphingosine-1-phosphate receptor 1-specific PET tracer for imaging vascular injury. J Nucl Cardiol. 2017;24(2):558–70.CrossRefGoogle Scholar
  36. 36.
    Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation. 2013;127(20):2038–46.CrossRefGoogle Scholar
  37. 37.
    Golestani R, Razavian M, Nie L, Zhang J, Jung JJ, Ye Y, et al. Imaging vessel wall biology to predict outcome in abdominal aortic aneurysm. Circ Cardiovasc Imaging. 2015;8(1)Google Scholar
  38. 38.
    Hong X, Bu L, Wang Y, Xu J, Wu J, Huang Y, et al. Increases in the risk of cognitive impairment and alterations of cerebral beta-amyloid metabolism in mouse model of heart failure. PLoS One. 2013;8(5):e63829.CrossRefGoogle Scholar
  39. 39.
    Cusso L, Vaquero JJ, Bacharach S, Desco M. Comparison of methods to reduce myocardial 18F-FDG uptake in mice: calcium channel blockers versus high-fat diets. PLoS One. 2014;9(9):e107999.CrossRefGoogle Scholar
  40. 40.
    D'Egidio G, Nichol G, Williams KA, Guo A, Garrard L, deKemp R, et al. Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial. JACC Cardiovasc Imaging. 2009;2(9):1060–8.CrossRefGoogle Scholar
  41. 41.
    Thackeray JT, Bankstahl JP, Wang Y, Wollert KC, Bengel FM. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice. Eur J Nucl Med Mol Imaging. 2015;42(5):771–80.CrossRefGoogle Scholar
  42. 42.
    Thackeray JT, Bengel FM. PET imaging of the autonomic nervous system. Q J Nucl Med Mol Imaging. 2016;60(4):362–82.PubMedGoogle Scholar
  43. 43.
    Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL Jr, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63(2):141–9.CrossRefGoogle Scholar
  44. 44.
    Thackeray JT, Renaud JM, Kordos M, Klein R, Dekemp RA, Beanlands RS, et al. Test-retest repeatability of quantitative cardiac 11C-meta-hydroxyephedrine measurements in rats by small animal positron emission tomography. Nucl Med Biol. 2013;40(5):676–81.CrossRefGoogle Scholar
  45. 45.
    Lautamaki R, Sasano T, Higuchi T, Nekolla SG, Lardo AC, Holt DP, et al. Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone. J Nucl Med. 2015;56(3):457–63.CrossRefGoogle Scholar
  46. 46.
    Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, et al. Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction. J Am Coll Cardiol. 2018;71(3):263–75.CrossRefGoogle Scholar
  47. 47.
    Wollenweber T, Roentgen P, Schafer A, Schatka I, Zwadlo C, Brunkhorst T, et al. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging. Circ Cardiovasc Imaging. 2014;7(5):811–8.CrossRefGoogle Scholar
  48. 48.
    Rischpler C, Dirschinger RJ, Nekolla SG, Kossmann H, Nicolosi S, Hanus F, et al. Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ Cardiovasc Imaging. 2016;9(4):e004316.CrossRefGoogle Scholar
  49. 49.
    Ueno T, Dutta P, Keliher E, Leuschner F, Majmudar M, Marinelli B, et al. Nanoparticle PET-CT detects rejection and immunomodulation in cardiac allografts. Circ Cardiovasc Imaging. 2013;6(4):568–73.CrossRefGoogle Scholar
  50. 50.
    Wang Q, Yang S, Jiang C, Li J, Wang C, Chen L, et al. Discovery of radioiodinated monomeric anthraquinones as a novel class of necrosis avid agents for early imaging of necrotic myocardium. Sci Rep. 2016;6:21341.CrossRefGoogle Scholar
  51. 51.
    Ziegler M, Alt K, Paterson BM, Kanellakis P, Bobik A, Donnelly PS, et al. Highly sensitive detection of minimal cardiac ischemia using positron emission tomography imaging of activated platelets. Sci Rep. 2016;6:38161.CrossRefGoogle Scholar
  52. 52.
    Jung JJ, Razavian M, Challa AA, Nie L, Golestani R, Zhang J, et al. Multimodality and molecular imaging of matrix metalloproteinase activation in calcific aortic valve disease. J Nucl Med. 2015;56(6):933–8.CrossRefGoogle Scholar
  53. 53.
    Duckett SG, Ginks MR, Knowles BR, Ma Y, Shetty A, Bostock J, et al. Advanced image fusion to overlay coronary sinus anatomy with real-time fluoroscopy to facilitate left ventricular lead implantation in CRT. Pacing Clin Electrophysiol. 2011;34(2):226–34.CrossRefGoogle Scholar
  54. 54.
    Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 2008;51(23):2266–75.CrossRefGoogle Scholar
  55. 55.
    Klein T, Abdulghani M, Smith M, Huang R, Asoglu R, Remo BF, et al. Three-dimensional 123I-meta-iodobenzylguanidine cardiac innervation maps to assess substrate and successful ablation sites for ventricular tachycardia: feasibility study for a novel paradigm of innervation imaging. Circ Arrhythm Electrophysiol. 2015;8(3):583–91.CrossRefGoogle Scholar
  56. 56.
    Fricke H, Elsner A, Weise R, Bolte M, van den Hoff J, Burchert W, et al. Quantitative myocardial perfusion PET combined with coronary anatomy derived from CT angiography: validation of a new fusion and visualisation software. Z Med Phys. 2009;19(3):182–8.CrossRefGoogle Scholar
  57. 57.
    Varasteh Z, Hyafil F, Anizan N, Diallo D, Aid-Launais R, Mohanta S, et al. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 111In-tilmanocept. EJNMMI Res. 2017;7(1):40.CrossRefGoogle Scholar
  58. 58.
    Luehmann HP, Detering L, Fors BP, Pressly ED, Woodard PK, Randolph GJ, et al. PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J Nucl Med. 2016;57(7):1124–9.CrossRefGoogle Scholar
  59. 59.
    Hyafil F, Pelisek J, Laitinen I, Schottelius M, Mohring M, Doring Y, et al. Imaging the cytokine receptor CXCR4 in atherosclerotic plaques with the radiotracer (68)Ga-pentixafor for PET. J Nucl Med. 2017;58(3):499–506.CrossRefGoogle Scholar
  60. 60.
    Liga R, Vontobel J, Rovai D, Marinelli M, Caselli C, Pietila M, et al. Multicentre multi-device hybrid imaging study of coronary artery disease: results from the EValuation of INtegrated Cardiac Imaging for the Detection and Characterization of Ischaemic Heart Disease (EVINCI) hybrid imaging population. Eur Heart J Cardiovasc Imaging. 2016;17(9):951–60.CrossRefGoogle Scholar
  61. 61.
    Terrovitis J, Kwok KF, Lautamaki R, Engles JM, Barth AS, Kizana E, et al. Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol. 2008;52(20):1652–60.CrossRefGoogle Scholar
  62. 62.
    Musialek P, Tekieli L, Kostkiewicz M, Miszalski-Jamka T, Klimeczek P, Mazur W, et al. Infarct size determines myocardial uptake of CD34+ cells in the peri-infarct zone: results from a study of (99m)Tc-extametazime-labeled cell visualization integrated with cardiac magnetic resonance infarct imaging. Circ Cardiovasc Imaging. 2013;6(2):320–8.CrossRefGoogle Scholar
  63. 63.
    Wang J, Arulanandam R, Wassenaar R, Falls T, Petryk J, Paget J, et al. Enhancing expression of functional human sodium iodide symporter and somatostatin receptor in recombinant oncolytic vaccinia virus for in vivo imaging of tumors. J Nucl Med. 2017;58(2):221–7.CrossRefGoogle Scholar
  64. 64.
    de Knegt MC, Fuchs A, Weeke P, Mogelvang R, Hassager C, Kofoed KF. Optimisation of coronary vascular territorial 3D echocardiographic strain imaging using computed tomography: a feasibility study using image fusion. Int J Cardiovasc Imaging. 2016;32(12):1715–23.CrossRefGoogle Scholar
  65. 65.
    Gaemperli O, Saraste A, Knuuti J. Cardiac hybrid imaging. Eur Heart J Cardiovasc Imaging. 2012;13(1):51–60.CrossRefGoogle Scholar
  66. 66.
    Grant EK, Faranesh AZ, Cross RR, Olivieri LJ, Hamann KS, O'Brien KJ, et al. Image fusion guided device closure of left ventricle to right atrium Shunt. Circulation. 2015;132(14):1366–7.CrossRefGoogle Scholar
  67. 67.
    Plank F, Mueller S, Uprimny C, Hangler H, Feuchtner G. Detection of bioprosthetic valve infection by image fusion of (18)fluorodeoxyglucose-positron emission tomography and computed tomography. Interact Cardiovasc Thorac Surg. 2012;14(3):364–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Nuclear MedicineHannover Medical SchoolHannoverGermany

Personalised recommendations