Multimodality Preclinical Imaging in Inflammatory Diseases

  • Paul D. ActonEmail author


Inflammation is a complex biological reaction to invasion of the host by a pathogen or harmful stimulus and is a normal response to maintain homeostasis after injury. However, unregulated or aberrant inflammatory responses are believed to be involved in the pathogenesis of a wide range of diseases, including Alzheimer’s disease, chronic depression, and autoimmune disorders such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). Imaging the immune response and inflammation in preclinical models is important in the understanding of these disorders and for the development of novel therapeutics. Many processes associated with inflammation are amenable to imaging, including changes in local blood flow and cellular metabolism, presence of phagocytic cells, increased enzymatic activity, and the overexpression of certain cell surface markers that are characteristic of the immune response. Techniques such as optical fluorescence and bioluminescence imaging, magnetic resonance imaging (MRI), X-ray computed tomography (CT), positron emission tomography (PET), endoscopic imaging, and ultrasound play an important role in imaging inflammation. Visualization of drug delivery with imaging would be vital to ensure adequate exposure at the site of inflammation, particularly for targeted therapies that have been developed to reduce or eliminate toxicities from systemic exposure. Indeed, imaging plays a vital role in initial diagnosis and patient selection and for monitoring response to treatment over time. This chapter introduces inflammation and the immune system and describes numerous methods for imaging the inflammatory response, with specific applications in neuroinflammation, RA, and IBD.


  1. 1.
    Murphy K, Weaver C. Janeway’s Immunobiology. 9th ed. New York: Garland Science; 2016.CrossRefGoogle Scholar
  2. 2.
    Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Natl Rev. 2013;13:159–75.Google Scholar
  3. 3.
    Murakami M, Hirano T. The molecular mechanisms of chronic inflammation development. Front Immunol. 2012;3:323.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    O’Hehir RE, Holgate ST, Sheikh A. Middleton’s allergy essentials. San Diego: Elsevier; 2016.Google Scholar
  5. 5.
    Mackay IR, Rose NR, editors. The autoimmune diseases. San Diego: Elsevier; 2014.Google Scholar
  6. 6.
    Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107.PubMedCrossRefGoogle Scholar
  7. 7.
    Gonzalez-Chavez A, et al. Pathophysiological implications between chronic inflammation and the development of diabetes and obesity. Cir Cir. 2011;79:190–7.Google Scholar
  8. 8.
    Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121:2111–7.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ader R, Felten D, Cohen N. Interactions between the brain and the immune system. Annu Rev Pharmacol Toxicol. 1990;30:561–602.PubMedCrossRefGoogle Scholar
  10. 10.
    Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol. 2014;32:367–402.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Vivekanantham S, Shah S, Dewj R, et al. Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair. Int J Neurosci. 2015;125:717–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Ellward E, Zipp F. Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Exp Neurol. 2014;262:8–17.CrossRefGoogle Scholar
  13. 13.
    Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bhattacharya A, Derecki NC, Lovenberg T, et al. Role of neuro-immunological factors in the pathophysiology of mood disorders. Psychopharmacologia. 2016;233:1623–36.CrossRefGoogle Scholar
  15. 15.
    Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Van Dijk G, van Heijnengen S, Reijne AC, et al. Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration. Front Neurosci. 2015;9:173. Scholar
  17. 17.
    Kominsky DJ, Campbell EL, Colgan SP, et al. Metabolic shifts in immunity and inflammation. J Immunol. 2010;184:4062–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Borregaard N, Herlin T. Energy metabolism of human neutrophils during phagocytosis. J Clin Invest. 1982;70:453–65.CrossRefGoogle Scholar
  19. 19.
    Wu C, Li F, Niu G, et al. PET imaging of inflammation biomarkers. Theranostics. 2013;3:448–66.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sampson CB. Labeled cells for imaging infection. In: Cox PH, Buscombe JR, editors. The imaging of infection and inflammation. Heidelberg: Springer; 1998. p. 31–60.CrossRefGoogle Scholar
  21. 21.
    Rodie ME. Imaging inflammation with Tc-99m hexamethyl propylene amine oxime (HMPAO) labeled leucocytes. Radiology. 1988;166:767–72.CrossRefGoogle Scholar
  22. 22.
    Thakur ML. Indium-111 labeled leukocytes for the localization of abscesses: preparation, analysis, tissue distribution and comparison with gallium-67 citrate in dogs. Lab Clin Med. 1977;89:217–28.Google Scholar
  23. 23.
    Glaudemans AWJM, Signore A. FDG-PET/CT in infections: the imaging method of choice? Eur J Nucl Med Mol Imaging. 2010;37:1986–91.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Forstrom LA, Mullan BP, Hung JC, et al. 18F-FDG labeling of human leukocytes. Nucl Med Commun. 2000;21:691–4.PubMedGoogle Scholar
  25. 25.
    Jacobs AH, Tavitian B, INMiND Consortium. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab. 2012;32:1393–415.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wunder A, Klohs J, Dirnagl U. Non-invasive visualization of CNS inflammation with nuclear and optical imaging. Neuroscience. 2009;158:1161–73.PubMedCrossRefGoogle Scholar
  27. 27.
    Klohs J, Steinbrink J, Bourayou R, et al. Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice. J Neurosci Methods. 2009;180:126–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Biddlestone J, Bandarra D, Rocha S. The role of hypoxia in inflammatory disease (Review). Int J Mol Med. 2015;35:859–69.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364:656–65.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Colgan SP, Campbell EL, Kominsky DJ. Hypoxia and mucosal inflammation. Annu Rev Pathol. 2016;11:77–100.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cummins EP, Keogh CE, Crean D, et al. The role of HIF in immunity and inflammation. Mol Asp Med. 2016;47-48:24–34.CrossRefGoogle Scholar
  32. 32.
    Koeppen M, Eckle T, Eltzschig HK. The hypoxia-inflammation link and potential drug targets. Curr Opin Anaesthesiol. 2011;24:363–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Dubois L, Landuyt W, Haustermans K, et al. Evaluation of hypoxia in an experimental rat tumor model by [(18)F]fluoromisonidazole PET and immunohistochemistry. Br J Cancer. 2004;91:1947–54.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Prekeges JL, Rasey JS, Grunbaum Z, et al. Reduction of fluoromisonidazole, a new imaging agent for hypoxia. Biochem Pharmacol. 1991;42:2387–95.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Tang G, Wang M, Tang X, et al. Fully automated one-pot synthesis of [(18)F]fluoromisonidazole. Nucl Med Biol. 2005;32:553–8.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Yip C, Blower PJ, Goh V, et al. Molecular imaging of hypoxia in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2015;42:956–76.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med. 2008;49(suppl 2):129S–48S.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Peeters SGJA, Zegers CML, Lieuwes NG, et al. A comparative study of the hypoxia PET tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a preclinical tumor model. Int J Radiat Oncol Biol Phys. 2015;91:351–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Guo T, Cui L, Shen J, et al. A highly sensitive long-wavelength fluorescence probe for nitroreductase and hypoxia: selective detection and quantification. Chem Commun. 2013;49:10820–2.CrossRefGoogle Scholar
  40. 40.
    Kiyose K, Hanaoka K, Oushiki D, et al. Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J Am Chem Soc. 2010;132:15846–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Xu K, Wang F, Pan X, et al. High selectivity imaging of nitroreductase using near-infrared fluorescence probe in hypoxic tumor. Chem Commun. 2013;49:2554–6.CrossRefGoogle Scholar
  42. 42.
    Vavere AL, Lewis JS. Cu-ATSM: a radiopharmaceutical for PET imaging of hypoxia. Dalton Trans. 2007;43:4893–902.CrossRefGoogle Scholar
  43. 43.
    Bourgeois M, Rajerison H, Guerard F, et al. Contribution of [64Cu]-ATSM PET in molecular imaging of tumor hypoxia compared to classical [18F]-MISO—a selected review. Nucl Med Rev Cent East Eur. 2011;14:90–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Buscombe JR. Exploring the nature of atheroma and cardiovascular inflammation in vivo using positron emission tomography (PET). Brit J Radiol. 2015;88:20140648.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu R-S, Chou T-K, Chang C-H, et al. Biodistribution, pharmacokinetics and PET imaging of [18F]FMISO, [18F]FDG and [18F]FAc in a sarcoma- and inflammation-bearing mouse model. Nucl Med Biol. 2009;36:305–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Stoll G, Bendszus M. Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience. 2008;158:1151–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Lindner JR, Song J, Xu F, et al. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation. 2000;102:2745–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Ruiz-Cabello J, Barnett BP, Bottomley PA, et al. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed. 2011;24:114–29.PubMedCrossRefGoogle Scholar
  49. 49.
    Hu L, Hockett FD, Chen J, et al. A generalized strategy for designing 19F/1H dual-frequency MRI coil for small animal imaging at 4.7 Tesla. J Magn Reson Imaging. 2011;34:245–52.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ahrens ET, Young W-B, Xu H, et al. Rapid quantification of inflammation in tissue samples using perfluorocarbon emulsion and fluorine-19 nuclear magnetic resonance. BioTechniques. 2011;50:229–34.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Jacoby C, Temme S, Mayenfels F, et al. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed. 2014;27:261–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Kadayakkara DK, Ranganathan S, Young WB, et al. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Investig. 2012;92:636–45.PubMedCrossRefGoogle Scholar
  53. 53.
    Balducci A, Helfer BM, Ahrens ET, et al. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI). J Inflamm. 2012;9:24. Scholar
  54. 54.
    Weise G, Basse-Luesebrink TC, Wessig C, et al. In vivo imaging of inflammation in the peripheral nervous system by 19F MRI. Exp Neurol. 2011;229:494–501.PubMedCrossRefGoogle Scholar
  55. 55.
    Pike VW, Halldin C, Crouzel C, et al. Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites—current status. Nucl Med Biol. 1993;20:503–25.PubMedCrossRefGoogle Scholar
  56. 56.
    Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol. 2006;80:308–22.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ching ASK, Kuhnast B, Damont A, et al. Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases. Insights Imaging. 2012;3:111–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Turkheimer FE, Rizzo G, Bloomfield PS, et al. The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans. 2015;43:586–92.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Vivash L, O’Brien TJ. Imaging microglial activation with TSPO PET: lighting up neurological disease? J Nucl Med. 2016;57:165–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Chauveau F, Boutin H, Van Camp N, et al. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35:2304–19.PubMedCrossRefGoogle Scholar
  61. 61.
    Kreisl WC, Fujita M, Fujimara Y, et al. Comparison of [11C]-(R)-PK 11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. NeuroImage. 2009;49:2924–32.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Owen DR, Yeo AJ, Gunn RN, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32:1–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Rojas C, Stathis M, Coughlin JM, et al. The low-affinity binding of second generation radiotracers targeting TSPO is associated with a unique allosteric binding site. J Neuroimmune Pharmacol. 2018;13:1–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Bunnett NW. Protease-activated receptors: how proteases signal to cells to cause inflammation and pain. Semin Thromb Hemost. 2006;32(Suppl 1):39–48.PubMedCrossRefGoogle Scholar
  65. 65.
    Klohs J, Baeva N, Steinbrink J, et al. In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia. J Cereb Blood Flow Metab. 2009;29:1284–92.PubMedCrossRefGoogle Scholar
  66. 66.
    Leahy AA, Esfahani SA, Foote AT, et al. Following the trajectory of osteoarthritis development through serial near infrared fluorescence imaging of MMP activities. Arthritis Rheum. 2015;67:442–53.CrossRefGoogle Scholar
  67. 67.
    Matusiak N, Waarde A, Bischoff R, et al. Probes for non-invasive matrix metalloproteinase-targeted imaging with PET and SPECT. Curr Pharmaceutical Design. 2013;19:4647–72.CrossRefGoogle Scholar
  68. 68.
    Wagner S, Breyholz H-J, Faust A, et al. Molecular imaging of matrix metalloproteinases in vivo using small molecule inhibitors for SPECT and PET. Curr Med Chem. 2006;13:2819–38.PubMedCrossRefGoogle Scholar
  69. 69.
    Bordenave T, Helle M, Beau F, et al. Synthesis and in vitro and in vivo evaluation of MMP-12 selective optical probes. Biconjugate Chem. 2016;27(10):2407–17. Scholar
  70. 70.
    Qin H, Zhao Y, Zhang J, et al. Inflammation-targeted gold nanorods for intravascular photoacoustic imaging detection of matrix metalloproteinase-2 (MMP2) in atherosclerotic plaques. Nanomedicine. 2016;12:1765–74.PubMedCrossRefGoogle Scholar
  71. 71.
    Tavare R, McCracken MN, Zettlitz KA, et al. Engineered antibody fragments for immune-PET imaging of endogenous CD8+ T cells in vivo. Proc Natl Acad Sci. 2014;111:1108–13.PubMedCrossRefGoogle Scholar
  72. 72.
    Tavare R, Escuin-Ordinas H, Mok S, et al. An effective immune-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 2015;76:73–82.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Klohs J, Grafe M, Graf K, et al. In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody. Stroke. 2008;39:2845–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Rashidian M, Keliher EJ, Bilate AM, et al. Noninvasive imaging of immune response. Proc Natl Acad Sci. 2015;112:6146–51.PubMedCrossRefGoogle Scholar
  75. 75.
    Albrecht DS, Granziera C, Hooker JM, et al. In vivo imaging of human neuroinflammation. ACS Chem Neurosci. 2016;7:470–83.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Pulli B, Chen JW. Imaging neuroinflammation—from bench to bedside. J Clin Immunol. 2014;5
  77. 77.
    Bloomfield PS, Selvaraj S, Veronese M, et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [11C]PBR28 PET brain imaging study. Am J Psychiatry. 2016;173:44–52.PubMedCrossRefGoogle Scholar
  78. 78.
    Setiawan E, Wilson AA, Mizrahi R, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psych. 2015;72:268–75.CrossRefGoogle Scholar
  79. 79.
    Hafizi S, Tseng H-H, Rao N, et al. Imaging microglial activation in untreated first-episode psychosis: a PET study with [18F]FEPPA. Am J Psychiatry. 2017;174(2):118–24. Scholar
  80. 80.
    Hannestad J, DellaGioia N, Gallezot J-D, et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [11C]PBR28 PET study. Brain Behav Immun. 2013;33:131–8.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kenk M, Selvanathan T, Rao N, et al. Imaging neuroinflammation in gray and white matter in schizophrenia: an in vivo PET study with [18F]-FEPPA. Schizophr Bull. 2015;41:85–93.PubMedCrossRefGoogle Scholar
  82. 82.
    van der Doef TF, de Witte LD, Sutterland AL, et al. In vivo (R)-[11C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis. NPJ Schizophr. 2016;2:16031. Scholar
  83. 83.
    Golla SSV, Boellaard R, Oikonen V, et al. Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2015;35:766–72.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Suridjan I, Pollock BG, Verhoeff NPLG, et al. In-vivo imaging of grey and white matter neuroinflammation in Alzheimer’s disease: a positron emission tomography study with a novel radioligand, [18F]-FEPPA. Mol Psychiatry. 2015;20:1579–87.PubMedCrossRefGoogle Scholar
  85. 85.
    Varrone A, Oikonen V, Forsberg A, et al. Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer’s disease patients and control subjects. Eur J Nucl Med Mol Imaging. 2015;42:438–46.PubMedCrossRefGoogle Scholar
  86. 86.
    Yokokura M, Terada T, Bunai T, et al. Depiction of microglial activation in aging and dementia: positron emission tomography with [11C]DPA713 versus [11C](R)PK11195. J Cereb Blood Flow Metab. 2017;37(3):877–89. Scholar
  87. 87.
    Castanon N, Luheshi G, Laye S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci. 2015;9:229. Scholar
  88. 88.
    Chiu CC, Liao YE, Yang LY, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods. 2016;272:38–49. Scholar
  89. 89.
    Nazem A, Sankowski R, Bacher M, et al. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation. 2015;12:74. Scholar
  90. 90.
    Biesmans S, Acton PD, Cotto C, et al. Effect of stress and peripheral immune activation on astrocyte activation in transgenic bioluminescent Gfap-luc mice. Glia. 2015;63:1126–37.PubMedCrossRefGoogle Scholar
  91. 91.
    Briard E, Zoghbi SS, Simeon FG, et al. Single-step high yield radiosynthesis and evaluation of a sensitive 18F-labeled ligand for imaging brain peripheral benzodiazepine receptors with PET. J Med Chem. 2009;52:688–99.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Buck JR, McKinley ET, Hight MR, et al. Quantitative, preclinical PET imaging of TSPO expression in glioma using [18F]PBR06. J Nucl Med. 2011;52:107–14.PubMedCrossRefGoogle Scholar
  93. 93.
    Fujimaru Y, Zoghbi SS, Simeon FG, et al. Quantification of translocator protein (18 kDa) in the human brain with PET and a novel radioligand (18)F-PBR06. J Nucl Med. 2009;50:1047–53.CrossRefGoogle Scholar
  94. 94.
    Iamaizumi M, Briard E, Zoghbi SS, et al. Kinetic evaluation in nonhuman primates of two new PET ligands for peripheral benzodiazepine receptors in brain. Synapse. 2007;61:595–605.CrossRefGoogle Scholar
  95. 95.
    Lartey FM, Ahn G-O, Shen B, et al. PET imaging of stroke-induced neuroinflammation in mice using [18F]PBR06. Mol Imaging Biol. 2014;16:109–17.PubMedCrossRefGoogle Scholar
  96. 96.
    Dedeurwaerdere S, Callaghan PD, Pham T, et al. PET imaging of brain inflammation during early epileptogenesis in a rat model of temporal lobe epilepsy. EJNMMI Res. 2012;2:60. Scholar
  97. 97.
    Wolf OT, Dyakin V, Patel A, et al. Volumetric structural magnetic resonance imaging (MRI) of the rat hippocampus following kainic acid (KA) treatment. Brain Res. 2002;934:87–96.PubMedCrossRefGoogle Scholar
  98. 98.
    Zhu L, Ramboz S, Hewitt D, et al. Non-invasive imaging of GFAP expression after neuronal damage in mice. Neurosci Lett. 2004;367:210–2.PubMedCrossRefGoogle Scholar
  99. 99.
    Biesmans S, Bouwknecht JA, Ver Donck L, et al. Peripheral administration of tumor necrosis factor-alpha induces neuroinflammation and sickness but not depressive-like behavior in mice. Biomed Res Int. 2015;2015:716920. Scholar
  100. 100.
    Biesmans S, Meert TF, Bouwknecht JA, et al. Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediat Inflamm. 2013;2013:271359. Scholar
  101. 101.
    Cordeau P Jr, Lalancette-Hebert M, Weng YC, et al. Live imaging of neuroinflammation reveals sex and estrogen effects on astrocyte response to ischemic injury. Stroke. 2008;39:935–42.PubMedCrossRefGoogle Scholar
  102. 102.
    Luo J, Elwood F, Britschgi M, et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med. 2013;210:157–72.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Golden GT, Smith GG, Ferraro TN, et al. Rat strain and age differences in kainic acid induced seizures. Epilepsy Res. 1995;20:151–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Ferraro TN, Golden GT, Smith GG, et al. Mapping murine loci for seizure response to kainic acid. Mamm Genome. 1997;8:200–8.PubMedCrossRefGoogle Scholar
  105. 105.
    McKhann GM, Wenzel HJ, Robbins CA, et al. Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology. Neuroscience. 2003;122:551–61.PubMedCrossRefGoogle Scholar
  106. 106.
    Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):P2023–38. Scholar
  107. 107.
    Put S, Westhovens R, Lahoutte T, et al. Molecular imaging of rheumatoid arthritis: emerging markers, tools, and techniques. Arthritis Res Ther. 2014;16:208.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wang S-C, Xie Q, Lv W-F. Positron emission tomography/computed tomography imaging and rheumatoid arthritis. Int J Rheum Dis. 2014;17:248–55.PubMedCrossRefGoogle Scholar
  109. 109.
    Wunder A, Straub RH, Gay S, et al. Molecular imaging: novel tools in visualizing rheumatoid arthritis. Rheumatology. 2005;44:1341–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Borrero CG, Mountz JM, Mountz JD. Emerging MRI methods in rheumatoid arthritis. Nat Rev Rheumatol. 2011;7:85–95.PubMedCrossRefGoogle Scholar
  111. 111.
    Rogers JL, Tarrant T, Kim J. Nanoparticle-based diagnostic imaging of inflammation in rheumatoid disease. Curr Rheumatol Rev. 2014;10:3–10.PubMedCrossRefGoogle Scholar
  112. 112.
    Clavel G, Marchiol-Fournigault C, Renault G, et al. Ultrasound and Doppler micro-imaging in a model of rheumatoid arthritis. Ann Rheum Dis. 2008;67:1765–72.PubMedCrossRefGoogle Scholar
  113. 113.
    McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.CrossRefGoogle Scholar
  114. 114.
    Ferrari M, Onuoha SC, Pitzalis C. Trojan horses and guided missiles: targeted therapies in the war on arthritis. Nat Rev Rheumatol. 2015;11:328–37.PubMedCrossRefGoogle Scholar
  115. 115.
    Asquith DL, Miller AM, McInnes IB, et al. Animal models of rheumatoid arthritis. Eur J Immunol. 2009;39:2040–4.PubMedCrossRefGoogle Scholar
  116. 116.
    McNamee K, Williams R, Seed M. Animals models of rheumatoid arthritis: how informative are they? Eur J Pharmacol. 2015;759:278–86.PubMedCrossRefGoogle Scholar
  117. 117.
    Vierboom MPM, Jonker M, Tak PP, et al. Preclinical models of arthritic disease in non-human primates. Drug Discov Today. 2007;12:327–35.PubMedCrossRefGoogle Scholar
  118. 118.
    Kundu-Raychaudhuri S, Mitra A, Datta-Mitra A, et al. In vivo quantification of mouse autoimmune arthritis by PET/CT. Int J Rheum Dis. 2016;19:452–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Matsui T, Nakata N, Nagai S, et al. Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis. J Nucl Med. 2009;50:920–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Cho H, Bhatti F-U-R, Yoon TW, et al. Non-invasive dual fluorescence in vivo imaging for detection of macrophage infiltration and matrix metalloproteinase (MMP) activity in inflammatory arthritic joints. Biomed Optics Express. 2016;7:1842–52.CrossRefGoogle Scholar
  121. 121.
    Terry SYA, Koenders MI, Franssen GM, et al. Monitoring therapy response of experimental arthritis with radiolabeled tracers targeting fibroblasts, macrophages, or integrin αvβ3. J Nucl Med. 2016;57:467–72.PubMedCrossRefGoogle Scholar
  122. 122.
    van der Geest T, Laverman P, Gerrits D, et al. Liposomal treatment of experimental arthritis can be monitored non-invasively with radiolabeled anti-fibroblast activation protein antibodies. J Nucl Med. 2017;58(1):151–5. Scholar
  123. 123.
    Mountz JM, Alavi A, Mountz JD. Emerging optical and nuclear medicine imaging methods in rheumatoid arthritis. Nat Rev Rheumatol. 2012;8:719–28.PubMedCrossRefGoogle Scholar
  124. 124.
    Robertson R, Germanos MS, Li C, et al. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol. 2009;54:N355–66.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Thorek DLJ, Robertson R, Bacchus WA, et al. Cerenkov imaging—a new modality for molecular imaging. Am J Nucl Med Mol Imaging. 2012;2:163–73.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Irmler IM, Gebhardt P, Hoffmann B, et al. 18F-fluoride positron emission tomography/computed tomography for noninvasive in vivo quantification of pathophysiological bone metabolism in experimental murine arthritis. Arthritis Res Ther. 2014;16:R155.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Barck KH, Lee WP, Diehl LJ, et al. Quantification of cortical bone loss and repair for therapeutic evaluation in collagen-induced arthritis, by micro-computed tomography and automated image analysis. Arthritis Rheum. 2004;50:3377–86.PubMedCrossRefGoogle Scholar
  128. 128.
    Sevilla RS, Cruz F, Chiu C-S, et al. Development and optimization of a high-throughput micro-computed tomography imaging method incorporating a novel analysis technique to evaluate bone mineral density of arthritic joints in a rodent model of collagen induced arthritis. Bone. 2015;73:32–41.PubMedCrossRefGoogle Scholar
  129. 129.
    Silva MD, Ruan J, Siebert E, et al. Application of surface roughness analysis on micro-computed tomography images of bone erosion: examples using a rodent model of rheumatoid arthritis. Mol Imaging. 2006;5:475–84.PubMedCrossRefGoogle Scholar
  130. 130.
    Silva MD, Savinainen A, Kapadia R, et al. Quantitative assessment of micro-CT imaging and histopathological signatures of experimental arthritis in rats. Mol Imaging. 2004;3:312–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–78.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    de Souza HSP, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13:13–27.PubMedCrossRefGoogle Scholar
  133. 133.
    Johnson CM, Wei C, Ensor JE, et al. Meta-analysis of colorectal cancer risk factors. Cancer Causes Control. 2013;24:1207–22.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Triantafillidis JK, Nasioulas G, Kosmidis PA. Colorectal cancer and inflammatory bowel disease: epidemiological, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res. 2009;29:2727–37.PubMedGoogle Scholar
  135. 135.
    Ananthakrishnan AN, Cagan A, Cai T, et al. Colonoscopy is associated with a reduced risk for colon cancer and mortality in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2015;13:322–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Al-Hawary MA, Kaza RK, Platt JF. CT enterography: concepts and advances in Crohn’s disease imaging. Radiol Clin N Am. 2013;51:1–16.PubMedCrossRefGoogle Scholar
  137. 137.
    Beltzer A, Kaulisch T, Bluhmki T, et al. Evaluation of quantitative imaging biomarkers in the DSS colitis model. Mol Imaging Biol. 2016;18:697–704.PubMedCrossRefGoogle Scholar
  138. 138.
    Gee MS, Harisinghani MG. MRI in patients with inflammatory bowel disease. J Magn Reson Imaging. 2011;33:527–34.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kilcoyne A, Kaplan JL, Gee MS. Inflammatory bowel disease imaging: current practice and future directions. World J Gastroenterol. 2016;22:917–32.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Masselli G, Gualdi G. CT and RM enterography in evaluating small bowel diseases: when to use which modality? Abdom Imaging. 2013;38:249–59.PubMedCrossRefGoogle Scholar
  141. 141.
    Mentzel H-J, Reinsch S, Kurzai M, et al. Magnetic resonance imaging in children and adolescents with chronic inflammatory bowel disease. World J Gastroenterol. 2014;20:1180–91.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Panes J, Bouhnik Y, Reinisch W, et al. Imaging techniques for assessment of inflammatory bowel disease: joint ECCO and ESGAR evidence-based consensus guidelines. J Crohn's Colitis. 2013;7:556–85.CrossRefGoogle Scholar
  143. 143.
    Perlman SB, Hall BS, Reichelderfer M. PET/CT imaging of inflammatory bowel disease. Semin Nucl Med. 2013;43:420–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Ream JM, Dillman JR, Adler J, et al. MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation. Pediatr Radiol. 2013;43:1077–85.PubMedCrossRefGoogle Scholar
  145. 145.
    Saverymuttu SH, Peters AM, Hodgson HJ, et al. Indium-111 autologous leucocyte scanning: comparison with radiology for imaging the colon in inflammatory bowel disease. Brit Med J. 1982;285:255–7.CrossRefGoogle Scholar
  146. 146.
    Treglia G, Quartuccio N, Sadeghi R, et al. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in patients with chronic inflammatory bowel disease: a systematic review and meta-analysis. J Crohn's Colitis. 2013;7:345–54.CrossRefGoogle Scholar
  147. 147.
    Kozarek R, Chiorean M, Wallace M, editors. Endoscopy in inflammatory bowel disease. Heidelberg: Springer; 2015.Google Scholar
  148. 148.
    Burggraaf J, Kamerling IMC, Gordon PB, et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat Med. 2015;21:955–61.PubMedCrossRefGoogle Scholar
  149. 149.
    Knieling F, Waldner MJ. Light and sound—emerging techniques for inflammatory bowel disease. World J Gastroenterol. 2016;22:5642–54.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Liu J, Dlugosz A, Neumann H. Beyond white light endoscopy: the role of optical biopsy in inflammatory bowel disease. World J Gastroenterol. 2013;19:7544–51.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Subramanian V, Ragunath K. Advanced endoscopic imaging: a review of commercially available technologies. Clin Gastroenterol Hepatol. 2014;12:368–76.PubMedCrossRefGoogle Scholar
  152. 152.
    Coda S, Thillainayagam AV. State of the art in advanced endoscopic imaging for the detection and evaluation of dysplasia and early cancer of the gastrointestinal tract. Clin Exp Gastroenterol. 2014;7:133–50.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Kumashiro R, Konishi K, Chiba T, et al. Integrated endoscopic system based on optical imaging and hyperspectral data analysis for colorectal cancer detection. Anticancer Res. 2016;36:3925–32.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Pence I, Mahadevan-Jansen A. Clinical instrumentation and applications of Raman spectroscopy. Chem Soc Rev. 2016;45:1958–79.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Tontini GE, Rath T, Neumann H. Advanced gastrointestinal endoscopic imaging for inflammatory bowel disease. World J Gastroenterol. 2016;22:1246–59.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Wu Y, Briley K, Tao X. Nanoparticle-based imaging of inflammatory bowel disease. NanoBiotechnology. 2016;8:300–15.Google Scholar
  157. 157.
    Goyal N, Rana A, Ahlawat A, et al. Animal models of inflammatory bowel disease: a review. Inflammopharmacology. 2014;22:219–33.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Kolios G. Animal models of inflammatory bowel disease: how useful are they really? Curr Opin Gastroenterol. 2016;32:251–7.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Neurath MF. Animal models of inflammatory bowel diseases: illuminating the pathogenesis of colitis, ileitis and cancer. Dig Dis. 2012;30(suppl 1):91–4.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Valatas V, Bamias G, Kolios G. Experimental colitis models: insights into the pathogenesis of inflammatory bowel disease and translational issues. Eur J Pharmacol. 2015;759:253–64.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Liu T-C, Stappenbeck TS. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol. 2016;11:127–48.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Mizoguchi A, Takeuchi T, Himuro H, et al. Genetically engineered mouse models for studying inflammatory bowel disease. J Pathol. 2015;238:205–19.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Valatas V, Vakas M, Kolios G. The value of experimental models of colitis in predicting the efficacy of biological therapies for inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol. 2013;305:G763–85.PubMedCrossRefGoogle Scholar
  164. 164.
    Ding S, Blue RE, Morgan DR, et al. Comparison of multiple enzyme activatable near-infrared fluorescent molecular probes for detection and quantification of inflammation in murine colitis models. Inflamm Bowel Dis. 2014;20:363–77.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Mitsunaga M, Kosaka N, Choyke PL, et al. Fluorescence endoscopic detection of murine colitis-associated colon cancer by topically applied enzymatically rapid-activatable probe. Gut. 2013;62:1179–86.PubMedCrossRefGoogle Scholar
  166. 166.
    Bernards N, Pottier G, Theze B, et al. In vivo evaluation of inflammatory bowel disease with the aid of μPET and the translocator protein 18 kDa radioligand [18F]DPA-714. Mol Imaging Biol. 2015;17:67–75.PubMedCrossRefGoogle Scholar
  167. 167.
    Heijink DM, Kleibeuker JH, Nagengast WB, et al. Total abdominal 18F-FDG uptake reflects intestinal adenoma burden in Apc mutant mice. J Nucl Med. 2011;52:431–6.PubMedCrossRefGoogle Scholar
  168. 168.
    Tietz O, Wuest M, Marshall A, et al. PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model. EJNMMI Res. 2016;6:37. Scholar
  169. 169.
    Atreya R, Neumann H, Neufert C, et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat Med. 2014;20:313–8.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Hua S, Marks E, Schneider JJ, et al. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine. 2015;11:1117–32.PubMedCrossRefGoogle Scholar
  171. 171.
    Karrout Y, Dubuquoy L, Piveteau C, et al. In vivo efficacy of microbiota-sensitive coatings for colon targeting: a promising tool for IBD therapy. J Control Release. 2015;197:121–30.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Takedatsu H, Mitsuyama K, Torimura T. Nanomedicine and drug delivery strategies for treatment of inflammatory bowel disease. World J Gastroenterol. 2015;21:11343–52.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Zhang S, Emann J, Zhou A, et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci Transl Med. 2015;7:300ra128. Scholar
  174. 174.
    Ali H, Weigmann B, Collnot E-M, et al. Budesonide loaded PLGA nanoparticles for targeting the inflamed intestinal mucosa—pharmaceutical characterization and fluorescence imaging. Pharm Res. 2016;33:1085–92.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Jin M, Yu D-G, Geraldes CFGC, et al. Theranostic fibers for simultaneous imaging and drug delivery. Mol Pharm. 2016;13:2457–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Janssen Research and DevelopmentJohnson & JohnsonSpring HouseUSA

Personalised recommendations