Advertisement

Small Animal Imaging in Oncology Drug Development

  • Joseph D. Kalen
  • James L. Tatum
Chapter

Abstract

Major advances in small animal imaging have been made during the last two decades encompassing a full array of platforms that image along the electromagnetic spectrum from MRI (100–101 m), optical (10−6 m), X-ray (10−9 m), to nuclear (10−11–10−12 m). This in part has been facilitated by the National Cancer Institute (NCI), National Institutes of Health (NIH) through the support of Small Animal Imaging Research Programs (SAIRP), and other initiatives to increase the availability of small animal imaging platforms and develop the expertise in the use of these methods. While the primary application of these new techniques has been research tools to answer scientific questions especially related to the understanding of in vivo systems, another area of interest has been the introduction of imaging-based in vivo assay systems for drug development in oncology. In fact, a major effort has been undertaken to integrate in vivo imaging biomarker development with in vitro biomarker development in contrast to the historical scenario of applying imaging only late in the development plan, leading to the conundrum of validation of imaging while trying to employ imaging as a biomarker.

Notes

Acknowledgments

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government Modified per federal agency (NIH).

Frederick National Laboratory for Cancer Research is accredited by AAALAC International and follows the Public Health Service Policy for the Care and Use of Laboratory Animals. Animal care was provided in accordance with the procedures outlined in the “Guide for Care and Use of Laboratory Animals” (National Research Council, 2011; National Academies Press, Washington, D.C.).

References

  1. 1.
    DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.  https://doi.org/10.1016/j.jhealeco.2016.01.012.CrossRefPubMedGoogle Scholar
  2. 2.
    Thomas DW, Burns J, Audette J, Carroll A, et al. Clinical development success rates 2006–2015, BioIndustry analysis. http://www.amplion.com/clinical-development-success-rates?hsCtaTracking=7e38cfe3-248d-440b-a7e4-c038acfa6eb2%7Ca6180579-5624-4deb-ac76-35b512407bd1
  3. 3.
    Vanhove C, Bankstahl JP, Krämer SD, Visser E, Belcari N, Vandenberghe S. Accurate molecular imaging of small animals taking into account animal models, handling, anesthesia, quality control and imaging system performance. EJNMMI Phys. 2015;2:31.  https://doi.org/10.1186/s40658-015-0135-y.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kinahan P, Fletcher JW. PET/CT standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496–505.  https://doi.org/10.1053/j.sult.2010.10.001.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sha W, Ye H, Iwamoto KS, Wong K-P, Wilks MQ, Stout D, McBride W, Huang S-C. Factors affecting tumor 18F-FDG uptake in longitudinal mouse PET studies. EJNMMI Res. 2013;3:51.  https://doi.org/10.1186/2191-219X-3-51.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Adiseshaiah PP, Patel NL, Ileva LV, Kalen JD, Haines DC, McNeil SE. Longitudinal imaging of cancer cell metastasis in two preclinical models: a correlation of noninvasive imaging to histopathology. Int J Molecul Imaging. 2014;2014:102702.  https://doi.org/10.1155/2014/102702.CrossRefGoogle Scholar
  7. 7.
    Fuchs K, Kukuk D, Mahling M, Quintanilla-Martinez L, Reischl G, Reutershan J, Lang F, Rocken M, Pichler BJ, Kneilling M. Impact of anesthetics on 3′-[18F]fluoro-3′-deoxythymidine ([18F]FLT) uptake in animal models of cancer and inflammation. Mol Imaging. 2013:1–11.  https://doi.org/10.2310/7290.2012.00042.CrossRefGoogle Scholar
  8. 8.
    Maier FC, Kneilling M, Reischl G, Cay F, Bukala D, Schmid A, Judenhofer MS, Röcken M, Machulla H-J, Pichler BJ. Significant impact of different oxygen breathing conditions on noninvasive in vivo tumor-hypoxia imaging using [18F]-fluoro-azomycinarabino- furanoside ([18F]FAZA). Radiat Oncol. 2011;6:165.  https://doi.org/10.1186/1748-717X-6-165.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med. 2006;47(6):999–1006.PubMedGoogle Scholar
  10. 10.
    Fuchs K, Kukuk D, Reischl G, Foller M, Eichner M, Reutershan J, Lang F, Rocken M, Pichler BJ, Kneilling M. Oxygen breathing affects 3′-deoxy-3’-18F-fluorothymidine uptake in mouse models of arthritis and cancer. J Nucl Med. 2012;53:823–30.  https://doi.org/10.2967/jnumed.111.101808.CrossRefPubMedGoogle Scholar
  11. 11.
    Hildebrandt IJ, Helen S, Weber WA. Anesthesia and other considerations for in vivo imaging of small animals. ILAR. 2008;49(1):17–26.  https://doi.org/10.1093/ilar.49.1.17.CrossRefGoogle Scholar
  12. 12.
    Ileva LV, Bernardo M, Patel NL, Riffle LA, Graff-Cherry C, Robinson C, Difilippantonio S, Kalen JD. Challenges in performing preclinical imaging in a large cohort therapeutic efficacy study of murine cancer models. 64th AALAS National Meeting, Baltimore, MD, October 29, 2013.Google Scholar
  13. 13.
    Honndorf VS, Schmidt H, Wehrl HF, Wiehr S, Ehrlichmann W, Quintanilla-Martinez L, Barjat H, Ricketts S-A, Pichler BJ. Quantitative correlation at the molecular level of tumor response to docetaxel by multimodal diffusion-weighted magnetic resonance imaging and [18F]FDG/[18F]FLT positron emission tomography. Mol Imaging. 2014;(1)  https://doi.org/10.2310/7290.2014.00045.CrossRefGoogle Scholar
  14. 14.
    Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/cas-mediated genome engineering. Cell. 2013;154(6):1370–9.  https://doi.org/10.1016/2013.08.022.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    The Jackson Laboratory, Bar Harbor, ME USA, https://www.jax.org/.
  16. 16.
    Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Gail Eckhardt S. Patient-derived tumor xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9:338–50.  https://doi.org/10.1038/nrclinonc.2012.61.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.CrossRefGoogle Scholar
  18. 18.
    Biological Testing Branch, Division of Cancer Diagnostics and Treatment, NCI, NIH: https://dtp.cancer.gov/organization/btb/default.htm
  19. 19.
    Center for Advanced Preclinical Research, Center for Cancer Research, NCI, NIH: https://ccr.cancer.gov/capr
  20. 20.
    van Marion DMS, et al. Studying cancer metastasis: Existing models, challenges and future perspectives. Crit Rev Oncol Hematol. 2015;97:107–17.  https://doi.org/10.1016/j.critrevonc.2015.08.00.CrossRefPubMedGoogle Scholar
  21. 21.
    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.  https://doi.org/10.1126/science.1203543.CrossRefPubMedGoogle Scholar
  22. 22.
    Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescence reporters in animal models. Mol Imaging. 2004;3(1):9–23.CrossRefGoogle Scholar
  23. 23.
    Siolas D, Honnon GJ. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 2013;73(17):5315–9.  https://doi.org/10.1158/0008-5472.CAN-13-1069.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cassidy JW, Caldas C, Bruna A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 2015;75(15):2963–8.  https://doi.org/10.1158/0008-5472.CAN-15-0727.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    American Cancer Society. Colorectal cancer. 2018.Google Scholar
  26. 26.
    Durkee BY, Weichert JP, Halberg RB. Small animal micro-CT colonography. Methods. 2010;50:36–41.  https://doi.org/10.1016/j.ymeth.2009.07.008.CrossRefPubMedGoogle Scholar
  27. 27.
    Boll H, Bag S, Nölte IS, Wilhelm T, Kramer M, Groden C, Böcker U, Brockmann MA. Double-contrast micro-CT colonoscopy in live mice. Int J Color Dis. 2011;26:721–7.  https://doi.org/10.1007/s00384-011-1181-0.CrossRefGoogle Scholar
  28. 28.
    Larsson AE, et al. Magnetic resonance imaging of experimental mouse colitis and association with inflammatory activity. Inflamm Bowel Dis. 2006;12:478–85.CrossRefGoogle Scholar
  29. 29.
    Herborn CU, et al. Dark lumen magnetic resonance colonography in a rodent polyp model: initial experience and demonstration of feasibility. Investig Radiol. 2004;39:723–7.CrossRefGoogle Scholar
  30. 30.
    Ileva LV, Bernardo M, Young MR, Riffle LA, Tatum JL, Kalen JD, Choyke PL. In vivo MRI virtual colonography in a mouse model of colon cancer. Nat Protoc. 2014;9(11):2682–92.  https://doi.org/10.1038/nprot.2014.178.CrossRefPubMedGoogle Scholar
  31. 31.
    Young MR, Ileva LV, Bernardo M, Riffle LA, Jones YL, Kim YS, Colburn NH, Choyke PL. Monitoring of tumor promotion and progression in a mouse model of inflammation-induced colon cancer with magnetic resonance colonography. Neoplasia. 2009;11(3):237–46.  https://doi.org/10.1593/neo.81326.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wu M, Rivkin A, Pham T. Panitumumab: human monoclonal antibody against the epidermal growth factor receptors for the treatment of metastatic colorectal cancer. Clin Ther. 2008;30:14–30.  https://doi.org/10.1016/j.clinthera.2008.01.014.CrossRefPubMedGoogle Scholar
  33. 33.
    Burgess AW. EGFR family: structure physiology signaling and therapeutic targets. Growth Factors. 2008;26:263–74.  https://doi.org/10.1080/0897719080231284.CrossRefPubMedGoogle Scholar
  34. 34.
    Ciardiello F, Tortora G. Anti-epidermal growth factor receptor drugs in cancer therapy. Expert Opin Investig Drugs. 2002;11:755–68.  https://doi.org/10.1517/13543784.11.6.755.CrossRefPubMedGoogle Scholar
  35. 35.
    Yang XD, Xia XC, Corvalan JR, Wang P, Davis CG. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol. 2001;38:17–23.  https://doi.org/10.1016/S1040-8428(00)00134-7.CrossRefPubMedGoogle Scholar
  36. 36.
    Bhattacharyya S, Kurdziel K, Wei L, Riffle L, Kaur G, Hill GC, Jacobs PM, Tatum JL, Dorosho JH, Kalen JD. Zirconium-89 labeled panitumumab: a potential immuno-PET probe for HER1-expressing carcinomas. Nucl Med Biol. 2013;40:451–7.  https://doi.org/10.1016/j.nucmedbio.2013.01.007.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bhattacharyya S, Patel NL, Wei L, Riffle LA, Kalen JD, Hill GC, Jacobs PM, Zinn KR, Rosenthal E. Synthesis and biological evaluation of panitumumab–IRDye800 conjugate as a fluorescence imaging probe for EGFR-expressing cancers. Med Chem Commum. 2014;  https://doi.org/10.1039/c4md00116h.CrossRefGoogle Scholar
  38. 38.
    Faux SP, Houghton CE, Hubbard A, Pat- rick G. Increased expression of epidermal growth factor receptor in rat pleural mesothelial cells correlates with carcinogenicity of mineral fibres. Carcinogenesis. 2000;21(12):2275–80.  https://doi.org/10.1093/carcin/21.12.2275.CrossRefPubMedGoogle Scholar
  39. 39.
    Nayak TK, Bernardo M, Milenic DE, Choyke PL, Brechbiel MW. Orthotopic Pleural Mesothelioma in Mice: SPECT/CT and MRI Imaging with HER1-and HER2-targeted Radiolabeled Antibodies. Radiology. 2013;267:173–82.  https://doi.org/10.1148/radiol.12121021.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Asselin M-C, O’Connor JPB, Boellaard R, Thacker NA, Jackson A. Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer. 2012;48:447–55.  https://doi.org/10.1016/j.ejca.2011.12.025.CrossRefPubMedGoogle Scholar
  41. 41.
    Soares F, Janela F, Pereira M, Seabra J, Freire MM. 3D lacunarity in multifractal analysis of breast tumor lesions in dynamic contrast-enhanced magnetic resonance imaging. IEEE Trans Image Process. 2013;22(11):4422–35.  https://doi.org/10.1109/TIP.2013.2273669.CrossRefPubMedGoogle Scholar
  42. 42.
    Goh V, Sanghera B, Wellsted DM, Sundin J, Halligan S. Assessment of the spatial pattern of colorectal tumor perfusion estimated at perfusion CT using two-dimensional fractal analysis. Eur Radiol. 2009;19:1358–65.  https://doi.org/10.1007/s00330-009-1304-y.CrossRefPubMedGoogle Scholar
  43. 43.
    Dominietto M, Lehmann S, Keist R, Rudin M. Pattern analysis accounts for heterogeneity observed in MRI studies of tumor angiogenesis. Magn Reson Med. 2013;70:1481–90.  https://doi.org/10.1002/mrm.24590.CrossRefPubMedGoogle Scholar
  44. 44.
    Leijenaar RTH, Nalbantov G, Carvalho S, van Elmpt WJC, Troost EGC, Boellaard R, Aerts HJWL, Gillies RJ, Lambin P. The efect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5:11075.  https://doi.org/10.1038/srep11075.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Buvat I, Orlhac F, Soussan M. J Nucl Med. 2015;56(11):1642–4.  https://doi.org/10.2967/jnumed.115.163469.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Small Animal Imaging Program, Laboratory Animal Sciences ProgramFrederick National Laboratory for Cancer Research Sponsored by the National Cancer InstituteFrederickUSA
  2. 2.Cancer Imaging Program, Division of Cancer Treatment and DiagnosisNational Cancer Institute, NIHBethesdaUSA

Personalised recommendations