Advertisement

Multimodal Optoacoustic Imaging

  • Murad Omar
  • Dominik Soliman
  • Vasilis Ntziachristos
Chapter

Abstract

Optical imaging is one of the oldest and most frequently used imaging techniques. Even though the first optical imaging device, the light microscope, has been invented around 1590, the human eye has served the same purpose for centuries before that. With the advent of new technologies, such as efficient electronics, powerful lasers, sensitive detectors, and high-precision optics, it became possible to improve the quality of the acquired images and to leverage physical phenomena that were previously inaccessible. For example, the introduction of femtosecond lasers enabled the exploitation of nonlinear optical phenomena, including higher harmonic generation or two-photon absorption, for high-resolution imaging. Similarly, with advances in ultrasound detection technology, phenomena such as the optoacoustic (photoacoustic) effect became effectively utilizable, which is the centerpiece of this chapter. With its resurrection in 1981, optoacoustics became a mainstream noninvasive imaging technology. The strength of optoacoustic imaging is that it enables biomedical imaging at multiple scales, from macroscopy all the way down to microscopy. Additionally, it readily allows for the combination with other imaging modalities. Based on the optoacoustic phenomenon, multiple imaging systems were introduced in the last decades, and this technology has been used for a multitude of applications, such as neuroimaging and cancer research.

References

  1. 1.
    Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7(8):603–14.PubMedGoogle Scholar
  2. 2.
    Ale A, Ermolayev V, Herzog E, Cohrs C, de Angelis MH, Ntziachristos V. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–X-ray computed tomography. Nat Methods. 2012;9(6):615–20.PubMedGoogle Scholar
  3. 3.
    Ntziachristos V, Yodh AG, Schnall M, Chance B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A. 2000;97(6):2767–72.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Bowen T. Radiation-induced thermoacoustic soft tissue imaging. In: IEEE Ultrasonic Symposium; 1981.Google Scholar
  5. 5.
    Wang LV, Wu H-I. Biomedical optics: principles and imaging. Hoboken, NJ: Wiley Interscience; 2007.Google Scholar
  6. 6.
    Diebold GJ, Sun T, Khan MI. Photoacoustic monopole radiation in one, two, and three dimensions. Phys Rev Lett. 1991;67(24):3384–7.PubMedGoogle Scholar
  7. 7.
    Westervelt PJ, Larson RS. Laser-excited broadside array. J Acoust Soc Am. 1973;54(1):121–2.Google Scholar
  8. 8.
    Bossy E, Gigan S. Photoacoustics with coherent light. Photoacoustics. 2016;4(1):22–35.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Khan MI, Diebold GJ. The photoacoustic effect generated by an isotropic solid sphere. Ultrasonics. 1995;33(4):265–9.Google Scholar
  10. 10.
    Khan MI, Diebold GJ. The photoacoustic effect generated by laser irradiation of an isotropic solid cylinder. Ultrasonics. 1996;34(1):19–24.Google Scholar
  11. 11.
    Treeby BE, Cox BT, Zhang EZ, Patch SK, Beard PC. Measurement of broadband temperature-dependent ultrasonic attenuation and dispersion using photoacoustics. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(8):1666–76.PubMedGoogle Scholar
  12. 12.
    Deán-Ben XL, Razansky D, Ntziachristos V. The effects of acoustic attenuation in optoacoustic signals. Phys Med Biol. 2011;56(18):6129–48.PubMedGoogle Scholar
  13. 13.
    Szabo TL. Diagnostic ultrasound imaging: inside out. Amsterdam: Academic Press; 2004.Google Scholar
  14. 14.
    Rosenthal A, Ntziachristos V, Razansky D. Acoustic inversion in optoacoustic tomography: a review. Curr Med Imaging Rev. 2013;9:318–36.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Xu M, Wang LV. Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E. 2005;71:016706.Google Scholar
  16. 16.
    Tomography—Wikipedia [Online]. Available: https://en.wikipedia.org/wiki/Tomography. Accessed 4 Sep 2016.
  17. 17.
    Buehler A, Kacprowicz M, Taruttis A, Ntziachristos V. Real-time handheld multispectral optoacoustic imaging. Opt Lett. 2013;38(9):1404–6.PubMedGoogle Scholar
  18. 18.
    Deán-Ben XL, Razansky D. Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light Sci Appl. 2014;3(1):e137.Google Scholar
  19. 19.
    Laufer J, Johnson P, Zhang E, Treeby B, Cox B, Pedley B, Beard P. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J Biomed Opt. 2012;17(5):56016.Google Scholar
  20. 20.
    Herzog E, Taruttis A, Beziere N, Lutich AA, Razansky D. Optical imaging of cancer heterogeneity with multispectral. Radiology. 2012;263(2):461–8.PubMedGoogle Scholar
  21. 21.
    Beziere N, Schacky C, Kosanke Y, Kimm M, Nunes A, Licha K, Aichler M, Walch A, Rummeny EJ, Ntziachristos V, et al. Optoacoustic imaging and staging of inflammation in a murine model of arthritis. Arthritis Rheumatol. 2014;66(8):2071–8.PubMedGoogle Scholar
  22. 22.
    Taruttis A, Wildgruber M, Kosanke K, Beziere N, Licha K, Haag R, Aichler M, Walch A, Rummeny E, Ntziachristos V. Multispectral optoacoustic tomography of myocardial infarction. Photoacoustics. 2013;1(1):3–8.PubMedGoogle Scholar
  23. 23.
    Taruttis A, Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photon. 2015;9(4):219–27.Google Scholar
  24. 24.
    Olefir I, Merčep E, Burton NC, Ovsepian SV, Ntziachristos V. Hybrid multispectral optoacoustic and ultrasound tomography for morphological and physiological brain imaging. J Biomed Opt. 2016;21(8):86005.PubMedGoogle Scholar
  25. 25.
    Nasiriavanaki M, Xia J, Wan H, Bauer AQ, Culver JP, Wang LV. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc Natl Acad Sci U S A. 2013;8943:9–13.Google Scholar
  26. 26.
    Gottschalk S, Fehm TF, Deán-Ben XL, Tsytsarev V, Razansky D. Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics. 2017;4(1):11007.Google Scholar
  27. 27.
    Tzoumas S, Nunes A, Olefir I, Stangl S, Symvoulidis P, Glasl S, Bayer C, Multhoff G, Ntziachristos V. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat Commun. 2016;7:12121.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Bohndiek SE, Sasportas LS, Machtaler S, Jokerst JV, Hori S, Gambhir SS. Photoacoustic tomography detects early vessel regression and normalization during ovarian tumor response to the antiangiogenic therapy trebananib. J Nucl Med. 2015;56(12):1942–7.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Jathoul AP, Laufer J, Ogunlade O, Treeby B, Cox B, Zhang E, Johnson P, Pizzey AR, Philip B, Marafioti T, et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat Photon. 2015;9:239–46.Google Scholar
  30. 30.
    Razansky D, Buehler A, Ntziachristos V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc. 2011;6(8):1121–9.PubMedGoogle Scholar
  31. 31.
    Bauer AQ, Nothdurft RE, Erpelding TN, Wang LV, Culver JP. Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography. J Biomed Opt. 2011;16(9):96016.Google Scholar
  32. 32.
    Mercep E, Burton NC, Claussen J, Razansky D. Whole-body live mouse imaging by hybrid reflection-mode ultrasound and optoacoustic tomography. Opt Lett. 2015;40(20):4643–6.PubMedGoogle Scholar
  33. 33.
    Kircher M, La Zerda AD, Jokerst J, Zavaleta C. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18:829–34.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Omar M, Gateau J, Ntziachristos V. Raster-scan optoacoustic mesoscopy in the 25–125 MHz range. Opt Lett. 2013;38(14):2472–4.PubMedGoogle Scholar
  35. 35.
    Zhang HF, Maslov K, Stoica G, Wang LV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 2006;24(7):848–51.PubMedGoogle Scholar
  36. 36.
    Estrada H, Turner J, Kneipp M, Razansky D. Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution. Laser Phys Lett. 2014;11(4):45601.Google Scholar
  37. 37.
    Omar M, Soliman D, Gateau J, Ntziachristos V. Ultrawideband reflection-mode optoacoustic mesoscopy. Opt Lett. 2014;39(13):3911–4.PubMedGoogle Scholar
  38. 38.
    Omar M, Rebling J, Wicker K, Schmitt-Manderbach T, Schwarz M, Gateau J, López-Schier H, Mappes T, Ntziachristos V. Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy. Light Sci Appl. 2017;6:e16186.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Chekkoury A, Gateau J, Driessen W, Symvoulidis P, Bézière N, Feuchtinger A, Walch A, Ntziachristos V. Optical mesoscopy without the scatter: broadband multispectral optoacoustic mesoscopy. Biomed Opt Express. 2015;6(9):3134–48.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Chekkoury A, Nunes A, Gateau J, Symvoulidis P, Feuchtinger A, Beziere N, Ovsepian SV, Walch A, Ntziachristos V. High-resolution multispectral optoacoustic tomography of the vascularization and constitutive hypoxemia of cancerous tumors. Neoplasia. 2016;18(8):459–67.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, Köster RW, Ntziachristos V. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat Photon. 2009;3(7):412–7.Google Scholar
  42. 42.
    Cobbold RSC. Foundations of biomedical ultrasound. New York: Oxford University Press; 2006.Google Scholar
  43. 43.
    Yao J, Wang LV. Photoacoustic microscopy. Laser Photon Rev. 2014;7(5):1–36.Google Scholar
  44. 44.
    Omar M, Schwarz M, Soliman D, Symvoulidis P, Ntziachristos V. Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM). Neoplasia. 2015;17(2):208–14.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Li H, Dong B, Zhang Z, Zhang HF, Sun C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci Rep. 2014;4:4496.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Huang S-W, Chen S-L, Ling T, Maxwell A, O’Donnell M, Guo LJ, Ashkenazi S. Low-noise wideband ultrasound detection using polymer microring resonators. Appl Phys Lett. 2008;92(19):193509.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Wissmeyer G, Soliman D, Shnaiderman R, Rosenthal A, Ntziachristos V. All-optical optoacoustic microscope based on wideband pulse interferometry. Opt Lett. 2016;41(9):1953–6.PubMedGoogle Scholar
  48. 48.
    Maslov K, Zhang HF, Hu S, Wang LV. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett. 2008;33(9):929–31.PubMedGoogle Scholar
  49. 49.
    Tserevelakis GJ, Soliman D, Omar M, Ntziachristos V. Hybrid multiphoton and optoacoustic microscope. Opt Lett. 2014;39(7):1819–22.PubMedGoogle Scholar
  50. 50.
    Soliman D, Tserevelakis GJ, Omar M, Ntziachristos V. Combining microscopy with mesoscopy using optical and optoacoustic label-free modes. Sci Rep. 2015;5:12902.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Yao J, Wang L, Yang J-M, Maslov KI, Wong TTW, Li L, Huang C-H, Zou J, Wang LV. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods. 2015;12(5):407–10.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Seeger M, Karlas A, Soliman D, Pelisek J, Ntziachristos V. Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma. Photoacoustics. 2016;4:102–11.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Shelton RL, Mattison SP, Applegate BE. Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy. J Biophoton. 2014;7(10):834–40.Google Scholar
  54. 54.
    Zhu L, Li L, Gao L, Wang LV. Multiview optical resolution photoacoustic microscopy. Optica. 2014;1(4):217–22.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang L, Maslov K, Yao J, Rao B, Wang LV. Fast voice-coil scanning optical-resolution photoacoustic microscopy. Opt Lett. 2011;36(2):139–41.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Song W, Xu Q, Zhang Y, Zhan Y, Zheng W, Song L. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo. Sci Rep. 2016;6:32240.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Tserevelakis GJ, Tsagkaraki M, Zacharakis G. Hybrid photoacoustic and optical imaging of pigments in vegetative tissues. J Microsc. 2016;263:300–6.PubMedGoogle Scholar
  58. 58.
    Wang Y, Maslov K, Kim C, Hu S, Wang LV. Integrated photoacoustic and fluorescence confocal microscopy. IEEE Trans Biomed Eng. 2010;57(10):2576–8.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Harrison T, Ranasinghesagara JC, Lu H, Mathewson K, Walsh A, Zemp RJ. Combined photoacoustic and ultrasound biomicroscopy. Opt. Express. 2009;17(24):22041–6.PubMedGoogle Scholar
  60. 60.
    Jiao S, Xie Z, Zhang HF, Puliafito CA. Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography. Opt Lett. 2009;34(19):2961–3.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Yao J, Shcherbakova DM, Li C, Krumholz A, Lorca RA, Reinl E, England SK, Verkhusha VV, Wang LV. Reversibly switchable fluorescence microscopy with enhanced resolution and image contrast. J Biomed Opt. 2014;19:86018.Google Scholar
  62. 62.
    Stiel AC, Deán-Ben XL, Jiang Y, Ntziachristos V, Razansky D, Westmeyer GG. High-contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed multispectral optoacoustic tomography. Opt Lett. 2015;40(3):367–70.PubMedGoogle Scholar
  63. 63.
    Jiang Y, Sigmund F, Reber J, Deán-Ben XL, Glasl S, Kneipp M, Estrada H, Razansky D, Ntziachristos V, Westmeyer GG. Violacein as a genetically-controlled, enzymatically amplified and photobleaching-resistant chromophore for optoacoustic bacterial imaging. Sci Rep. 2015;5:11048.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Stritzker J, Kirscher L, Scadeng M, Deliolanis NC, Morscher S, Symvoulidis P, Schaefer K, Zhang Q, Buckel L, Hess M, et al. Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer. Proc Natl Acad Sci. 2013;110(9):3316–20.PubMedGoogle Scholar
  65. 65.
    Aguirre J, Schwarz M, Soliman D, Buehler A, Omar M, Ntziachristos V. Broadband mesoscopic optoacoustic tomography reveals skin layers. Opt Lett. 2014;39(21):6297.PubMedGoogle Scholar
  66. 66.
    Schwarz M, Omar M, Buehler A, Aguirre J, Ntziachristos V. Implications of ultrasound frequency in optoacoustic mesoscopy of the skin. IEEE Trans Med Imaging. 2015;34(2):672–7.PubMedGoogle Scholar
  67. 67.
    Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Burton NC, Sardella TCP, Claussen J, Poeppel TD, Bachmann HS, et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci Transl Med. 2015;7(317):317ra199.PubMedGoogle Scholar
  68. 68.
    Yang J-M, Favazza C, Chen R, Yao J, Cai X, Maslov K, Zhou Q, Shung KK, Wang LV. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat Med. 2012;18(8):1297–302.PubMedGoogle Scholar
  69. 69.
    He H, Buehler A, Ntziachristos V. Optoacoustic endoscopy with curved scanning. Opt Lett. 2015;40(20):4667–70.PubMedGoogle Scholar
  70. 70.
    Diot G, Dima A, Ntziachristos V. Multispectral opto-acoustic tomography of exercised muscle oxygenation. Opt Lett. 2015;40(7):1496–9.PubMedGoogle Scholar
  71. 71.
    Sethuraman S, Amirian JH, Litovsky SH, Smalling RW, Emelianov SY. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques. Opt Express. 2008;16(5):3362–7.PubMedGoogle Scholar
  72. 72.
    Aguirre J, Schwarz M, Garzorz N, Omar M, Buehler A, Eyerich K, Ntziachristos V. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat Biomed Eng. 2017;1:0068.Google Scholar
  73. 73.
    Schwarz M, Soliman D, Omar M, Buehler A, Aguirre J, Ntziachristos V. Optoacoustic dermoscopy of the human skin: tuning excitation energy for optimal detection bandwidth with fast and deep imaging in vivo. IEEE Trans Med Imaging. 2017;36:1287–96.PubMedGoogle Scholar
  74. 74.
    Taruttis A, Timmermans AC, Wouters PC, Kacprowicz M, van Dam GM, Ntziachristos V. Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology. 2016;281(1):256–63.PubMedGoogle Scholar
  75. 75.
    Neuschmelting V, Burton NC, Lockau H, Urich A, Harmsen S, Ntziachristos V, Kircher MF. Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs. 3D handheld probes for potential clinical translation. Photoacoustics. 2016;4(1):1–10.PubMedGoogle Scholar
  76. 76.
    Waldner MJ, Knieling F, Egger C, Morscher S, Claussen J, Vetter M, Kielisch C, Fischer S, Pfeifer L, Hagel A, et al. Multispectral optoacoustic tomography in Crohn’s disease: non-invasive imaging of disease activity. Gastroenterology. 2016;151:238–40.PubMedGoogle Scholar
  77. 77.
    Estrada H, Sobol E, Baum O, Razansky D. Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation. Laser Phys Lett. 2014;11(12):125601.Google Scholar
  78. 78.
    Hu S, Maslov K, Wang LV. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett. 2011;36(7):1134–6.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Strohm EM, Berndl ESL, Kolios MC. High frequency label-free photoacoustic microscopy of single cells. Photoacoustics. 2013;1(3):49–53.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Murad Omar
    • 1
    • 2
  • Dominik Soliman
    • 1
    • 2
  • Vasilis Ntziachristos
    • 1
    • 2
  1. 1.Chair of Biological ImagingTechnische Universität MünchenMunichGermany
  2. 2.Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations