Instrumentation Challenges in (S)PE(C)T Systems

  • David BrasseEmail author
  • Frederic Boisson


To date, molecular imaging is globally recognized as a powerful tool to assess in vivo anatomical and functional structures within a living subject [1, 2]. A wide range of imaging modalities based on different physical principles is available. Used individually, the value of modalities such as X-ray computed tomography (CT), single-photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), and ultrasound (US) is well recognized, both in clinical and preclinical fields [3–12]. Although established for decades, these modalities are still subject to much research, both on the development of new detection components and the design of new probes to artificially improve the natural contrast induced by physical processes.


  1. 1.
    Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17:545.PubMedCrossRefGoogle Scholar
  2. 2.
    James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92:897.PubMedCrossRefGoogle Scholar
  3. 3.
    Flohr TG, et al. Multi-detector row CT systems and image-reconstruction techniques. Radiology. 2005;235:756.PubMedCrossRefGoogle Scholar
  4. 4.
    Brasse D, et al. Towards an inline reconstruction architecture for micro-CT systems. Phys Med Biol. 2005;50:5799.PubMedCrossRefGoogle Scholar
  5. 5.
    O’Connor MK, Kemp BJ. Single-photon emission computed tomography/computed tomography: basic instrumentation and innovations. Semin Nucl Med. 2006;36:258.PubMedCrossRefGoogle Scholar
  6. 6.
    Madsen MT. Recent advances in SPECT imaging. J Nucl Med. 2007;48:661.CrossRefGoogle Scholar
  7. 7.
    Khalil MM, et al. Molecular SPECT imaging: an overview. Int J Mol Imaging. 2011;2011:796025.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Levin CS, Zaidi H. Current trends in preclinical PET system design. PET Clinics. 2007;2:125.PubMedCrossRefGoogle Scholar
  9. 9.
    Goertzen AL, et al. NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med. 2012;53:1300.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hollingworth W, et al. The diagnostic and therapeutic impact of MRI: an observational multi-centre study. Clin Radiol. 2000;55:825.PubMedCrossRefGoogle Scholar
  11. 11.
    Pichler BJ, et al. PET/MRI: paving the way for the next generation of Clinical multimodality imaging applications. J Nucl Med. 2010;51:333.PubMedCrossRefGoogle Scholar
  12. 12.
    Ebbini ES, Ter Haar G. Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperth. 2015;23:1.Google Scholar
  13. 13.
    Anger HO. Scintillation camera. Rev Sci Instr. 1958;29:27.CrossRefGoogle Scholar
  14. 14.
    Pichler BJ, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47:639.PubMedGoogle Scholar
  15. 15.
    Keereman V, et al. Temperature dependence of APD-based PET scanners. Med Phys. 2013;40:092506.PubMedCrossRefGoogle Scholar
  16. 16.
    Chatziioannou AF. PET scanners dedicated to molecular imaging of small animal models. Mol Imaging Biol. 2002;4:47–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Casey ME, Nutt R. A multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci. 1986;33:460–3.CrossRefGoogle Scholar
  18. 18.
    Conti M, et al. Characterization of 176Lu background in LSO-based PET scanners. Phys Med Biol. 2017;62:3700–11.PubMedCrossRefGoogle Scholar
  19. 19.
    Lecoq P. Development of new scintillators for medical applications. Nucl Instrum Methods Phys Res A. 2016;809:130–9.CrossRefGoogle Scholar
  20. 20.
    Derenzo SE, et al. The quest for the ideal inorganic scintillator. Nucl Instrum Methods Phys Res A. 2003;505:111.CrossRefGoogle Scholar
  21. 21.
    Otte AN, et al. A test of silicon photomultipliers as readout for PET. Nucl Instrum Methods Phys Res A. 2005;545:705.CrossRefGoogle Scholar
  22. 22.
    Ginzburg D, et al. Optimizing the design of a silicon photomultiplier-based radiation detector. Nucl Instrum Methods Phys Res A. 2011;652:474. Scholar
  23. 23.
    Thiessen JD, et al. Performance evaluation of SensL SiPM arrays for high-resolution PET. IEEE Nucl Sci Symp Conf Rec. 2013:M21.Google Scholar
  24. 24.
    Frach T, et al. The digital silicon photomultiplier - principle of operation and intrinsic detector performance. In: 2009 IEEE Nucl. Sci. Symp. Conf. Rec. (Orlando, FL, USA, 24 Oct.–1 Nov.); 2009, p. 1959–1965.Google Scholar
  25. 25.
    Gu Y, Levin CS. Study of electrode pattern design for a CZT-based detector. Phys Med Biol. 2014;59:2599–621.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yoo, et al. Simulation for CZT Compton PET (Maximization of the efficiency for PET using Compton event). Nucl Instrum Methods Phys Res A. 2011;652:713–6.CrossRefGoogle Scholar
  27. 27.
    Gu Y, et al. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET. Phys Med Biol. 2011;56:1563–2011.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Levin CS. Promising new photon detection concepts for high-resolution clinical and preclinical PET. J Nucl Med. 2012;53:167–70.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Abbaszadeh S, et al. Positioning true coincidences that undergo inter- and intra-crystal scatter for a sub-mm resolution cadmium zinc telluride-based PET system. Phys Med Biol. 2018;63(2):025012. Scholar
  30. 30.
    Thompson C. The effects of detector material and structure on PET spatial resolution and efficiency. IEEE Trans Nucl Sci. 1990;37:718–24.CrossRefGoogle Scholar
  31. 31.
    Chung YH, et al. Characterization of dual layer phoswich detector performance for small animal PET using Monte Carlo simulation. Phys Med Biol. 2004;49:2881.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Jung JH, et al. Optimization of LSO/LuYAP phoswich detector for small animal PET. Nucl Instrum Meth Phys Res A. 2007;571:669–75.CrossRefGoogle Scholar
  33. 33.
    Eriksson L, et al. Design Considerations of phoswich detectors for high resolution positron emission tomography. IEEE Trans Nucl Sci. 2009;56:182–8.CrossRefGoogle Scholar
  34. 34.
    Ito M, et al. A Four-Layer DOI detector with a relative offset for use in an animal PET system. IEEE Trans Nucl Sci. 2010;57:976–81.CrossRefGoogle Scholar
  35. 35.
    Roncali, et al. Design considerations for DOI-encoding PET detectors using phosphor-coated crystals. IEEE Trans Nucl Sci. 2014;61:67–73.CrossRefGoogle Scholar
  36. 36.
    Shao Y, et al. Design studies of a high resolution PET detector using APD arrays. IEEE Trans Nucl Sci. 2000;47:1051–7.CrossRefGoogle Scholar
  37. 37.
    Shao Y, et al. Dual APD array readout of LSO crystals: Optimization of crystal surface treatment. IEEE Trans Nucl Sci. 2002;49:649–54.CrossRefGoogle Scholar
  38. 38.
    Dokhale PA, et al. Performance measurements of a depth-encoding PET detectormodule based on position-sensitive avalanche photodiode readout. Phys Med Biol. 2004;49:4293.PubMedCrossRefGoogle Scholar
  39. 39.
    Dokhale PA, et al. Intrinsic spatial resolution and parallax correction using depth-encoding PET detector modules based on position-sensitive APD readout. IEEE Trans Nucl Sci. 2006;53:2666–70.CrossRefGoogle Scholar
  40. 40.
    James SS, et al. Experimental characterization and system simulations of depth of interaction PET detectors using 0.5 mm and 0.7 mm LSO arrays. Phys Med Biol. 2009;54:4605–19.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Yang Y, et al. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes. Phys Med Biol. 2006;51:2131–42.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Moses WW, et al. A room temperature LSO/PIN photodiode PET detector module that measures depth of interaction. IEEE Trans Nucl Sci. 1995;42:1085–9.CrossRefGoogle Scholar
  43. 43.
    Chaudhari AJ, et al. PSPMT/APD hybrid DOI detectors for the PET component of a dedicated breast PET/CT system: A feasibility study. IEEE Trans Nucl Sci. 2008;55:853–61.CrossRefGoogle Scholar
  44. 44.
    Godinez F, et al. Characterization of a high-resolution hybrid DOI detector for a dedicated breast PET/CT scanner. Phys Med Biol. 2012;57:3435–49.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Godinez F, et al. Development of an ultra high resolution PET scanner for imaging rodent paws: PawPET. IEEE Trans Rad Plas Med Sci. 2018;2:7–16.CrossRefGoogle Scholar
  46. 46.
    Ter-Pogossian MM, et al. A multislice positron emission computed tomograph (PETT IV) yielding transverse and longitudinal images. Radiology. 1978;128:477–84.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Shimizu K, et al. Development of 3-D detector system for positron CT. IEEE Trans Nucl Sci. 1988;35:717–20.CrossRefGoogle Scholar
  48. 48.
    Braem A, et al. Feasibility of a novel design of high resolution parallax-free Compton enhanced PET scanner dedicated to brain research. Phys Med Biol. 2004;49:2547.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Jan S, et al. GePEToS: A Geant4 Monte Carlo simulation package for positron emission tomography. IEEE Trans Nucl Sci. 2005;52:102–6.CrossRefGoogle Scholar
  50. 50.
    Salvador S, et al. Design of a high performances small animal PET system with axial oriented crystals and DOI capability. IEEE Trans Nucl Sci. 2009;56:17–23.CrossRefGoogle Scholar
  51. 51.
    Beltrame P, et al. The AX-PET demonstrator-Design, construction and characterization. Nucl Instrum Methods Phys Res A. 2011;654:546–59.CrossRefGoogle Scholar
  52. 52.
    Casella C, et al. A high resolution TOF-PET concept with axial geometry and digital SiPM readout. Nucl Instrum Methods Phys Res A. 2014;736:161–8.CrossRefGoogle Scholar
  53. 53.
    Maas MC, et al. Monolithic scintillator PET detectors with intrinsic depth of interaction correction. Phys Med Biol. 2009;54:1893–908.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    van Dam HT, et al. Improved nearest neighbor methods for gamma photon interaction position determination in monolithic scintillator PET detectors. IEEE Trans Nucl Sci. 2011;58:2139–47.CrossRefGoogle Scholar
  55. 55.
    van Dam HT, et al. A practical method for determining depth of interaction in monolithic PET scintillator detectors. Phys Med Biol. 2011;56:4135–45.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Joung J, et al. cMICE: a high resolution animal PET using continuous LSO with a statistics based positioning scheme. Nucl Instrum Methods Phys Res A. 2002;489:584–98.CrossRefGoogle Scholar
  57. 57.
    Ling T, et al. Depth of interaction decoding of a continuous crystal detector module. Phys Med Biol. 2007;52:2213–28.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Ling T, et al. Parametric positioning of a continuous crystal PET detector with depth of interaction decoding. Phys Med Biol. 2008;53:1843–63.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Miyaoka RS, et al. Detector response modeling light for a thick slab continuous detector. J Nucl Sci Technol. 2008;45:634–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Miyaoka RS, et al. New miniature continuous crystal element (cMICE) detector geometries. IEEE Nucl Sci Symp Conf Rec. 2009;2009:3639.Google Scholar
  61. 61.
    Maas MC, et al. Experimental characterization of monolithic crystal small-animal PET detectors read out by APD arrays. IEEE Trans Nucl Sci. 2006;53:1071–7.CrossRefGoogle Scholar
  62. 62.
    Bruyndonckx P, et al. Towards a continuous crystal APD-based PET detector design. Nucl Instrum Methods Phys Res A. 2007;571:182–6.CrossRefGoogle Scholar
  63. 63.
    Ling T, et al. Performance comparisons of continuous Miniature Crystal elemento (cMICE) detectors. IEEE Trans Nucl Sci. 2006;53:2513–8.CrossRefGoogle Scholar
  64. 64.
    Schaart DR, et al. A novel, SiPM-array-based monolithic scintillator detector for PET. Phys Med Biol. 2009;54:3501–12.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    van der Lann DJ, et al. Optical simulation of monolithic scintillator detectors using GATE / Geant4. Phys Med Biol. 2010;55:1659–75.CrossRefGoogle Scholar
  66. 66.
    van Dam HT, et al. Sub-200 ps CRT monolithic scintillator in PET detectors using digital SiPM arrays and maximum likelihood estimation time interaction. Phys Med Biol. 2013;58:3243–57.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Seifert S, et al. First characterization of a digital SiPM based time-of-flight PET detector with 1 mm spatial resolution. Phys Med Biol. 2013;58:3061–74.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Borghi G, et al. A 32 mm × 32 mm × 22 mm monolithic LYSO:Ce detector with dual-sided digital photon counter readout for ultra-performance TOF-PET and TOF-PET/MRI. Phys Med Biol. 2016;61:4929–49.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Benlloch JM, et al. Scanner calibration of a small animal PET Camera based on continuous LSO crystals and flat panel PSPMTs. Nucl Instrum Methods Phys Res A. 2007;571:26–9.CrossRefGoogle Scholar
  70. 70.
    Llosa G, et al. Characterization of a PET detector head based on continuous LYSO crystals and monolithic, 64-pixel silicon photomultiplier arrays. Phys Med Biol. 2010;55:72997315.CrossRefGoogle Scholar
  71. 71.
    Gonzales A, et al. Small animal PET based on 16x16 TSV-MPPCs and monolithic crystals. Eur J Nucl Med Mol Imaging Physics. 2015;2:A16.Google Scholar
  72. 72.
    Yoshida E, et al. Basic performance of a wide area PET detector with a monolithic scintillator. Phys Radiol Technol. 2011;4:4134–9.CrossRefGoogle Scholar
  73. 73.
    Spinks TJ, et al. Quantitative PET and SPECT performance characteristics of the Albira Trimodal pre-clinical tomograph. Phys Med Biol. 2014;59:715–31.PubMedCrossRefGoogle Scholar
  74. 74.
    Szanda I, et al. National Electrical Manufacturers Association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner. J Nucl Med. 2011;52:1741–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Belcari N, et al. NEMA NU-4 performance evaluation of the IRIS PET/CT preclinical scanner. IEEE Trans Rad Plas Med Sci. 2017;1:301–9.CrossRefGoogle Scholar
  76. 76.
    Bergeron M, et al. Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research. Phys Med Biol. 2014;59:661.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang, et al. Performance evaluation of the GE Healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med. 2006;47:1891–900.PubMedGoogle Scholar
  78. 78.
    Habte F, Levin CS. Investigation of low noise, low cost readout electronics for high sensitivity PET systems based on Avalanche Photodiode arrays. IEEE Nucl Sci Symp Conf Rec. 2002;2:661.Google Scholar
  79. 79.
    Monzo JM, et al. Evaluation of a timing integrated circuit architecture for continuous crystal and SiPM based PET systems. JINST. 2012;8:C03017.CrossRefGoogle Scholar
  80. 80.
    Espana S, et al. Performance evaluation of SiPM photodetectors for PET imaging in the presence of magnetic fields. Nucl Instrum Methods Phys Res A. 2010;613:308.CrossRefGoogle Scholar
  81. 81.
    Zeng H, et al. Design of a novel front-end readout ASIC for pet imaging system. J Signal Inform Proc. 2013;4:129.CrossRefGoogle Scholar
  82. 82.
    Dey S, et al. Impact of analog IC impairments in SiPM interface electronics. IEEE Trans Nucl Sci. 2012;2012:3572.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Jarron P, et al. Time based readout of a silicon photomultiplier (SiPM) for Time Of Flight Positron Emission Tomography (TOF-PET). IEEE Nucl Sci Symp Conf Rec. 2009.Google Scholar
  84. 84.
    Del Guerra A, et al. Silicon Photomultipliers (SiPM) as novel photodetectors for PET. Nucl Instrum Methods Phys Res A. 2011;648:S232.CrossRefGoogle Scholar
  85. 85.
    Choong WS, et al. High-performance electronics for time-of-flight PET systems. JINST. 2013;8:T01006.PubMedCrossRefGoogle Scholar
  86. 86.
    Roloa MD, et al. TOFPET ASIC for PET applications. JINST. 2013;8:C02050.CrossRefGoogle Scholar
  87. 87.
    Streun M, et al. Coincidence detection by digital processing of free-running sampled pulses. Nucl Instrum Methods Phys Res A. 2002;487:530.CrossRefGoogle Scholar
  88. 88.
    Siegel S, et al. Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT. IEEE Trans Nucl Sci. 1996;43:1634–996.CrossRefGoogle Scholar
  89. 89.
    Popov V, et al. Readout electronics for multianode photomultiplier tubes with pad matrix anode layout. IEEE Nucl Sci Symp Conf Rec. 2003.Google Scholar
  90. 90.
    Boisson F, et al. Description and properties of a resistive network applied to emission tomography detector readouts. Nucl Instrum Methods Phys Res A. 2017;872:100–6.CrossRefGoogle Scholar
  91. 91.
    Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60:R115.PubMedCrossRefGoogle Scholar
  92. 92.
    Shao Y, et al. Simultaneous PET and MR imaging. Phys Med Biol. 1997;42:1965.PubMedCrossRefGoogle Scholar
  93. 93.
    Shao Y, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci. 1997;44.CrossRefGoogle Scholar
  94. 94.
    Pichler B, et al. Studies with a prototype high resolution PET scanner based on LSO-APD modules. IEEE Trans Nucl Sci. 1998;45:1298.CrossRefGoogle Scholar
  95. 95.
    Ziegler SI, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med Mol Imaging. 2001;28:136.CrossRefGoogle Scholar
  96. 96.
    Grazioso R, et al. APD-based PET detector for simultaneous PET/MR imaging. Nucl Instrum Methods Phys Res A. 2006;569:301.CrossRefGoogle Scholar
  97. 97.
    Delso G, et al. Performance measurements of the siemens mMR integrated wholebody PET/MR scanner. J Nucl Med. 2011;52:1914.PubMedCrossRefGoogle Scholar
  98. 98.
    Maramraju SH, et al. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol. 2011;56:2459.PubMedCrossRefGoogle Scholar
  99. 99.
    Peng H, et al. Investigation of a clinical PET detector module design that employs large-area avalanche photodetectors. Phys Med Biol. 2011;56:3603.PubMedCrossRefGoogle Scholar
  100. 100.
    Kolb A, et al. Technical performance evaluation of a human brain PET/MRI system. Eur Radiol. 2012;22:1776.PubMedCrossRefGoogle Scholar
  101. 101.
    Judenhofer MS, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2006;14:459.CrossRefGoogle Scholar
  102. 102.
    Catana C, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. PNAS. 2008;105:3705.PubMedCrossRefGoogle Scholar
  103. 103.
    Kwon SI, et al. Development of small-animal PET prototype using silicon photomultiplier (SiPM): initial results of phantom and animal imaging studies. J Nucl Med. 2011;52:572.PubMedCrossRefGoogle Scholar
  104. 104.
    Yoon HS, et al. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J Nucl Med. 2012;53:608.PubMedCrossRefGoogle Scholar
  105. 105.
    Ko, et al. New high performance SiPM PET insert to 9.4-T MR scanner for simultaneous PET/MRI studies. J Nucl Med. 2013:54.Google Scholar
  106. 106.
    Ko, et al. Evaluation of a silicon photomultiplier PET insert for simultaneous PET and MR imaging. Med Phys. 2016;43:72–83.PubMedCrossRefGoogle Scholar
  107. 107.
    Ko, et al. Simultaneous multiparametric PET/MRI with silicon photomultiplier PET and ultra-high-field MRI for small-animal imaging. J Nucl Med. 2016;57:1309–15.PubMedCrossRefGoogle Scholar
  108. 108.
    Yamamoto S, et al. Development of a Si-PM-based high-resolution PET system for small animals. Phys Med Biol. 2010;55:5817–31.PubMedCrossRefGoogle Scholar
  109. 109.
    Yamamoto S, et al. Interference between PET and MRI sub-systems in a siliconphotomultiplier-based PET/MRI system. Phys Med Biol. 2011;56:4147.PubMedCrossRefGoogle Scholar
  110. 110.
    Yamamoto S, et al. Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system. Phys Med Biol. 2012;57:N1.PubMedCrossRefGoogle Scholar
  111. 111.
    Weissler B, et al. MR compatibility aspects of a silicon photomultiplier-based PET/RF insert with integrated digitisation. Phys Med Biol. 2014;59:5119.PubMedCrossRefGoogle Scholar
  112. 112.
    Wehner J, et al. PET/MRI insert using digital SiPMs: investigation of MR-compatibility. Nucl Instrum Methods Phys Res A. 2014;734:116–21.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wehner J, et al. MR-compatibility assessment of the first preclinical PET-MRI insert equipped with digital silicon photomultipliers. Phys Med Biol. 2015;60:2231–55.PubMedCrossRefGoogle Scholar
  114. 114.
    Schug D, et al. Initial PET performance evaluation of a preclinical insert for PET/MRI with digital SiPM technology. Phys Med Biol. 2016;61:2851–78.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Parl C, et al. A novel optically transparent RF shielding for fully integrated PET/MRI systems. Phys Med Biol. 2017;62:7357–78.PubMedCrossRefGoogle Scholar
  116. 116.
    Jaszczak RJ. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol. 2006;51:R99–R115.CrossRefGoogle Scholar
  117. 117.
    Sajedia S, et al. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging. Nucl Instrum Methods Phys Res A. 2014;741:169–76.CrossRefGoogle Scholar
  118. 118.
    Furenlid LR, et al. FastSPECT II: A Second-Generation High-Resolution Dynamic SPECT Imager. IEEE Trans Nucl Sci. 2004;51:631–5.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Walrand S, et al. Evaluation of novel whole-body high-resolution rodent SPECT (Linoview) based on direct acquisition of linogram projections. J Nucl Med. 2005;46:1872–80.PubMedGoogle Scholar
  120. 120.
    Meikle SR, et al. A prototype coded aperture detector for small animal SPECT. IEEE Trans Nucl Sci. 2002;49:2167–71.CrossRefGoogle Scholar
  121. 121.
    McElroy DP, et al. Performance evaluation of A-SPECT: a high resolution desktop pinhole SPECT system for imaging small animals. IEEE Trans Nucl Sci. 2002;49:2139–47.CrossRefGoogle Scholar
  122. 122.
    Kim H, et al. SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys. 2006;33:465–74.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Goertzen AL, et al. First results from the high-resolution mouseSPECT annular scintillation camera. Trans Med Imaging. 2005;24:863–7.CrossRefGoogle Scholar
  124. 124.
    Barrett HH, Hunter WCJ. Detectors for small-animal SPECT I. Overview of technologies. In: Kupinski MA, Barrett HH, editors. Small animal SPECT imaging. New York: Springer; 2005.Google Scholar
  125. 125.
    Wirrwar A, et al. The optimal crystal geometry for small-field-of-view gamma cameras: arrays or disks? IEEE Nucl Sci Symp Conf Rec. 2000;3:91–3.Google Scholar
  126. 126.
    Wirrwar A, et al. Influence of crystal geometry and wall reflectivity on scintillation photon yield and energy resolution. IEEE Nucl Sci Symp Conf Rec. 1999;3:1443–5.Google Scholar
  127. 127.
    Eisen Y, et al. CdTe and CdZnTe X-ray and gamma-ray detectors for imaging systems. IEEE Trans Nucl Sci. 2004;51:1191.CrossRefGoogle Scholar
  128. 128.
    Verger L, et al. “Performance and perspectives of a CdZnTe-based gamma camera for medical imaging,” Nuclear Science. IEEE Trans Nucl Sci. 2004;51:3111–7.CrossRefGoogle Scholar
  129. 129.
    Meng LJ, et al. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector. Nucl Instrum Methods Phys Res A. 2009;604:548–54.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Ben-Haim S, et al. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging. 2010;37:1710–21.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Montemont G, et al. Evaluation of a CZT gamma-ray detection module concept for SPECT, IEEE Nucl Sci Symp Conf Rec. 2012;4091–4097.Google Scholar
  132. 132.
    Del Guerra A, et al. An integrated PET-SPECT small animal imager: preliminary results. IEEE Trans Nucl Sci. 2000;47:4.Google Scholar
  133. 133.
    Loudos GK, et al. A 3D high-resolution gamma camera for radiopharmaceutical studies with small animals. Appl Radiat Isot. 2003;58:501–8.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    R. Pani, et al. A novel parallel hole collimator for high resolution SPET imaging with a compact LaBr3 gamma camera. IEEE Nucl Sci Symp Conf Rec. 2008;3824–8.Google Scholar
  135. 135.
    Schramm NU, et al. High-resolution SPECT using multi-pinhole collimation. IEEE Trans Nucl Sci. 2003;50:315–20.CrossRefGoogle Scholar
  136. 136.
    Beekman FJ, Vastenhouw B. Design and Simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol. 2004;49:4579–92.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Cao Z, et al. Optimal number of pinhole in multi-pinhole SPECT for mouse brain imaging-a simulation study. Phys Med Biol. 2005;50:4609–24.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Funk T, et al. A novel approach to multi-pinhole SPECT for myocardial perfusion imaging. J Nucl Med. 2006;47:595–602.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Vanhove C, et al. Three-pinhole collimator to improve axial spatial resolution and sensitivity in pinhole SPECT. Eur J Nucl Med Mol Imaging. 2008;35:407–15.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Gullberg GT, et al. Estimation of geometrical parameters for cone beam tomography. Med Phys. 1989;17:264–72.CrossRefGoogle Scholar
  141. 141.
    Wang H, et al. Determination of collimator and acquisition parameters for astigmatic SPECT imaging. IEEE Nucl Sci Symp Conf Rec. 1995;2:1116–20.Google Scholar
  142. 142.
    Lewis DP and Tsui BMW Estimation of half fan-beam collimator parameters for brain spect with an l-shaped dual camera spect system. IEEE Nucl Sci Symp Conf Rec. 1998;1052–6.Google Scholar
  143. 143.
    Qi JY, Huesman RH. Effect of errors in the system matrix on maximum a posteriori image reconstruction. Phys Med Biol. 2005;50:3297–312.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Mu Z, et al. Recent progress on SPECT imaging with near-field coded aperture collimation: a small animal study. IEEE Nucl Sci Symp Conf Rec. 2010;3450–3.Google Scholar
  145. 145.
    Zeng GL, Gagnon D. Image reconstruction algorithm for a SPECT system with a convergent rotating slat collimator. IEEE Trans Nucl Sci. 2004;51:1.CrossRefGoogle Scholar
  146. 146.
    Metzler SD, et al. On-axis sensitivity and resolution of a slit-slat collimator. J Nucl Med. 2006;47:1884–90.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Novak JR, et al. Verification of the sensitivity and resolution dependence on the incidence angle for slit-slat collimation. Phys Med Biol. 2008;53:953–66.PubMedCrossRefGoogle Scholar
  148. 148.
    Song TY, et al. Performance amelioration for small animal SPECT using optimized pinhole collimator and image correction technique. IEEE Nucl Sci Symp Conf Rec. 2005;52:1396–400.CrossRefGoogle Scholar
  149. 149.
    Rajaee A, et al. Simulation study of the influence of collimator material on image quality improvement for high energy photons in nuclear medicine using MCNP code. J Theor Appl Phys. 2011;4:13–8.Google Scholar
  150. 150.
    Keyes W. The fan beam camera. Phys Med Biol. 1975;20:489–91.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Tosswill C. Computerized rotating laminar collimation imaging system US Patent Application 646 (granted December 1977), p. 917–67.Google Scholar
  152. 152.
    Entine G. Cadmium telluride gamma camera. IEEE Trans Nucl Sci. 1979;26:552–8.CrossRefGoogle Scholar
  153. 153.
    Gagnon D, et al. Design considerations for a new solid-state gamma-camera: SOLSTICE Proc. IEEE Nucl Sci Symp Conf Rec. 2001;2:1156–60.Google Scholar
  154. 154.
    Van Holen R, et al. Comparing planar image quality of rotating slat and parallel hole collimation: influence of system modeling. Phys Med Biol. 2008;53:19892002.Google Scholar
  155. 155.
    Webb S, et al. Geometric efficiency of a rotating slit collimator for improved planar gamma camera imaging. Phys Med Biol. 1993;38:627–38.CrossRefGoogle Scholar
  156. 156.
    Lodge MA, et al. A prototype rotating slat collimator for single photon emission computed tomography. Trans Med Imaging. 1996;15:500–11.CrossRefGoogle Scholar
  157. 157.
    Boisson F, et al. Characterization of a rotating slat collimator system dedicated to small animal imaging. Phys Med Biol. 2011;56:1471–85.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Boisson F, et al. Assessment of a fast generated analytical matrix for rotating slat collimation iterative reconstruction: a possible method to optimize the collimation profile. Phys Med Biol. 2015;60:2403–19.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Jan S, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Boisson F, et al. Determination of optimal collimation parameters for a rotating slat collimator system: a system matrix method using ML-EM. Phys Med Biol. 2016;61:2302–18.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Van der Have F, et al. U-SPECT-II: An ultra-high-resolution device for molecular small-animal imaging. J Nucl Med. 2009;50:599–605.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Fresneau N, et al. Design of a serotonin 4 receptor radiotracer with decreased lipophilicity for single photon emission computed tomography. Eur J Med Chem. 2015;94:386–96. Scholar
  163. 163.
    Van Audenhaege K, et al. Collimator design for a multipinhole brain SPECT insert for MRI. Med Phys. 2015;42:6679.CrossRefGoogle Scholar
  164. 164.
    Meier D, et al. A SPECT camera for combined MRI and SPECT for small animals. Nucl Instrum Methods Phys Res A. 2011;652:731–4.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Cai L, et al. MRC-SPECT: A sub-500 mm resolution MR-compatible SPECT system for simultaneous dual-modality study of small animals. Nucl Instrum Methods Phys Res A. 2014;734:147–51.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Busca P, et al. Simulation of the expected performance of INSERT: A new multimodality SPECT/MRI system for preclinical and clinical imaging. Nucl Instrum Methods Phys Res A. 2014;734:141–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université de Strasbourg, CNRS, IPHCStrasbourgFrance

Personalised recommendations