Advertisement

Efficient and Adaptive Error Recovery

  • Zipeng Li
  • Krishnendu Chakrabarty
  • Tsung-Yi Ho
  • Chen-Yi Lee
Chapter

Abstract

Errors are likely to occur due to defects, chip degradation, and the lack of precision inherent in biochemical experiments. Therefore, an efficient error-recovery strategy is essential to ensure the correctness of assays executed on micro-electrode-dot-array (MEDA) biochips. By exploiting MEDA-specific advances in droplet sensing, this chapter presents a novel error-recovery technique to dynamically reconfigure the biochip using real-time data provided by on-chip sensors. Local recovery strategies based on probabilistic-timed-automata are presented for various types of errors. An online synthesis technique and a control flow are also proposed to connect local-recovery procedures with global error recovery for the complete bioassay. Moreover, an integer linear programming-based method is also proposed to select the optimal local-recovery time for each operation. Laboratory experiments using a fabricated MEDA chip are used to characterize the outcomes of key droplet operations. The PRISM model checker and three benchmarks are used for an extensive set of simulations. Our results highlight the effectiveness of the proposed error-recovery strategy.

References

  1. 1.
    Li, Z., Lai, K. Y.-T., Yu, P.-H., Chakrabarty, K., Pajic, M., Ho, T.-Y., et al. (2016). Error recovery in a micro-electrode-dot-array digital microfluidic biochip. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 105:1–105:8.Google Scholar
  2. 2.
    Jaress, C., Brisk, P., & Grissom, D. (2015). Rapid online fault recovery for cyber-physical digital microfluidic biochips. In Proceedings of IEEE VLSI Test Symposium, pp. 1–6.Google Scholar
  3. 3.
    Zhao, Y., Xu, T., & Chakrabarty, K. (2010). Integrated control-path design and error recovery in the synthesis of digital microfluidic lab-on-chip. ACM Journal on Emerging Technologies in Computing Systems, 6(3), 11.CrossRefGoogle Scholar
  4. 4.
    Verheijen, H., & Prins, M. (1999). Reversible electrowetting and trapping of charge: Model and experiments. Langmuir, 15, 6616–6620.CrossRefGoogle Scholar
  5. 5.
    Yoon, J.-Y., & Garrell, R. L. (2003). Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Analytical Chemistry, 75, 5097–5102.CrossRefGoogle Scholar
  6. 6.
    Luo, Y., Chakrabarty, K., & Ho, T.-Y. (2013). Error recovery in cyberphysical digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(1), 59–72.CrossRefGoogle Scholar
  7. 7.
    Alistar, M., Pop, P., & Madsen, J. (2015). Redundancy optimization for error recovery in digital microfluidic biochips. Design Automation for Embedded Systems, 19(1–2), 129–159.CrossRefGoogle Scholar
  8. 8.
    Alistar, M., & Pop, P. (2012). Online synthesis for error recovery in digital microfluidic biochips with operation variability. In Proceedings of Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 53–58.Google Scholar
  9. 9.
    Ibrahim, M., & Chakrabarty, K. (2015). Efficient error recovery in cyberphysical digital-microfluidic biochips. IEEE Transactions on Multi-Scale Computing Systems, 1(1), 46–58.CrossRefGoogle Scholar
  10. 10.
    Lai, K. Y.-T., Yang, Y.-T., & Lee, C.-Y. (2015). An intelligent digital microfluidic processor for biomedical detection. Journal of Signal Processing Systems, 78(1), 85–93.CrossRefGoogle Scholar
  11. 11.
    Norman, G., Parker, D., & Sproston, J. (2013). Model checking for probabilistic timed automata. Formal Methods in System Design, 43, 164–190.zbMATHCrossRefGoogle Scholar
  12. 12.
    Ho, T.-Y., Chakrabarty, K., & Pop, P. (2011). Digital microfluidic biochips: Recent research and emerging challenges. In Proceedings of ACM/IEEE International Conference on Hardware/Software Codesign and System Synthesis, pp. 335–343.Google Scholar
  13. 13.
    Chakrabarty, K., & Su, F. (2006). Digital microfluidic biochips: Synthesis, testing, and reconfiguration techniques. Boca Raton: CRC Press.Google Scholar
  14. 14.
    Su, F., Ozev, S., & Chakrabarty, K. (2003). Testing of droplet-based microelectrofluidic systems. In Proceedings of IEEE International Test Conference, pp. 1192–1200.Google Scholar
  15. 15.
    Su, F., Chakrabarty, K., & Fair, R. B. (2006). Microfluidics-based biochips: Technology issues, implementation platforms, and design-automation challenges. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(2), 211–223.CrossRefGoogle Scholar
  16. 16.
    Xu, T., & Chakrabarty, K. (2007). Functional testing of digital microfluidic biochips. In Proceedings of IEEE International Test Conference, pp. 1–10.Google Scholar
  17. 17.
    Fair, R. B., Khlystov, A., Tailor, T. D., Ivanov, V., Evans, R. D., Griffin, P. B., et al. (2007). Chemical and biological applications of digital-microfluidic devices. IEEE Design and Test of Computers, 24(1), 10–24.CrossRefGoogle Scholar
  18. 18.
    Zhao, Y., & Chakrabarty, K. (2009). On-line testing of lab-on-chip using reconfigurable digital-microfluidic compactors. International Journal of Parallel Programming, 37(4), 370–388.zbMATHCrossRefGoogle Scholar
  19. 19.
    Lai, K. Y.-T., Shiu, M.-F., Lu, Y.-W., Ho, Y.-C., Kao, Y.-C., Yang, Y.-T., et al. (2015). A field-programmable lab-on-a-chip with built-in self-test circuit and low-power sensor-fusion solution in 0.35 μm standard cmos process. In Proceedings of IEEE Asian Solid-State Circuits Conference, pp. 1–4.Google Scholar
  20. 20.
    Fair, R., Srinivasan, V., Ren, H., Paik, P., Pamula, V., & Pollack, M. (2003). Electrowetting-based on-chip sample processing for integrated microfluidics. In Proceedings of IEEE International Electron Devices Meeting, pp. 32–35.Google Scholar
  21. 21.
    Brémaud, P. (2013) Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. New York: Springer Science and Business Media.zbMATHGoogle Scholar
  22. 22.
    Su, F., & Chakrabarty, K. (2008). High-level synthesis of digital microfluidic biochips. ACM Journal on Emerging Technologies in Computing Systems, 3(4), 1.CrossRefGoogle Scholar
  23. 23.
    Kwiatkowska, M., Norman, G., & Parker, D. (2011). Prism 4.0: Verification of probabilistic real-time systems. In Proceedings of International Conference Computer Aided Verification, pp. 585–591.CrossRefGoogle Scholar
  24. 24.
    Bertsimas, D., & Tsitsiklis, J. (1997). Introduction to linear optimization. Belmont: Athena Scientific.Google Scholar
  25. 25.
    Luo, Y., Chakrabarty, K., & Ho, T.-Y. (2012). A cyberphysical synthesis approach for error recovery in digital microfluidic biochips. In Proceedings of IEEE/ACM Design, Automation and Test Conference in Europe, pp. 1239–1244.Google Scholar
  26. 26.
    Li, Z., Lai, K. Y.-T., Yu, P.-H., Ho, T.-Y., Chakrabarty, K., & Lee, C.-Y. (2016). High-level synthesis for micro-electrode-dot-array digital microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference (pp. 146:1–146:6). New York: ACM.Google Scholar
  27. 27.
    Su, F., & Chakrabarty, K. (2005). Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference, pp. 825–830.Google Scholar
  28. 28.
    Su, F., Hwang, W., & Chakrabarty, K. (2006). Droplet routing in the synthesis of digital microfluidic biochips. In Proceedings of IEEE/ACM Design, Automation and Test Conference in Europe, 1, pp. 1–6.Google Scholar
  29. 29.
    Zhao, Y., & Chakrabarty, K. (2012). Cross-contamination avoidance for droplet routing in digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(6), 817–830.CrossRefGoogle Scholar
  30. 30.
    Huang, T.-W., & Ho, T.-Y. (2011). A two-stage integer linear programming-based droplet routing algorithm for pin-constrained digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30, 215–228.CrossRefGoogle Scholar
  31. 31.
    Roy, P., Rahaman, H., & Dasgupta, P. (2010). A novel droplet routing algorithm for digital microfluidic biochips. In Proceedings of ACM Great Lakes Symposium on VLSI (pp. 441–446). New York: ACM.Google Scholar
  32. 32.
    Chen, Z., Teng, D. H.-Y., Wang, G. C.-J., & Fan, S.-K. (2011). Droplet routing in high-level synthesis of configurable digital microfluidic biochips based on microelectrode dot array architecture. Biochip Journal, 5(4), 343–352.CrossRefGoogle Scholar
  33. 33.
    Wang, G., Teng, D., & Fan, S.-K. (2011). Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnology, 5(4), 152–160.CrossRefGoogle Scholar
  34. 34.
    Li, Z., Lai, K. Y.-T., Yu, P.-H., Chakrabarty, K., Ho, T.-Y., & Lee, C.-Y. (2017). Droplet size-aware high-level synthesis for micro-electrode-dot-array digital microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems, 11(3), 612–626.CrossRefGoogle Scholar
  35. 35.
    Trivedi, K. S. (2008). Probability and statistics with reliability, queueing, and computer science applications. New York: John Wiley and Sons.Google Scholar
  36. 36.
    Gefen, A. (2009). Bioengineering research of chronic wounds: A multidisciplinary study approach. New York: Springer Science and Business Media.CrossRefGoogle Scholar
  37. 37.
    Fei, S. (2004). Module placement for fault-tolerant microfluidics-based biochips. ACM Transactions on Design Automation of Electronic Systems, 11(3), 682–710.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zipeng Li
    • 1
  • Krishnendu Chakrabarty
    • 2
  • Tsung-Yi Ho
    • 3
  • Chen-Yi Lee
    • 4
  1. 1.Intel (United States)Santa ClaraUSA
  2. 2.Department of ECEDuke UniversityDurhamUSA
  3. 3.National Tsing Hua UniversityHsinchuTaiwan
  4. 4.National Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations