Scenario Interpretation for Automated Driving at Intersections

  • David Perdomo LopezEmail author
  • Rene Waldmann
  • Christian Joerdens
  • Raul Rojas
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 921)


Driving at urban intersections is a very tough issue due to the complexity of the scenario. The driver is required to understand the traffic rules, predict the motion of other vehicles and, accordingly, make the proper decision. In this sense, automated driving systems in such environments become an important objective from a research point of view. Particularly, understanding the surrounding of the ego vehicle represents a challenging task. In this paper we propose an approach that simplifies the interpretation of the scenario. This concept aims to break down the whole maneuver in a set of primary situations. Accordingly, this facilitates the decision making at intersection and the following planning along the desired driving corridor.


Automated driving Scenario interpretation Selfs driving systems 


  1. 1.
    Okuda, R., Kajiwara, Y., Terashima, K.: A survey of technical trend of ADAS and autonomous driving. In: Proceedings of Technical Program-2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), pp. 1–4. IEEE (2014)Google Scholar
  2. 2.
    Geyer, S., et al.: Concept and development of a unified ontology for generating test and use-case catalogues for assisted and automated vehicle guidance. IET Intell. Transp. Syst. 8(3), 183–189 (2014)CrossRefGoogle Scholar
  3. 3.
    Domsch, C., Negele, H.: Einsatz von referenzfahrsituationen bei der entwicklung von fahrerassistenzsystemen; 3. Tagung Aktive Sicherheit durch Fahrerassistenz, pp. 07–08, April 2008Google Scholar
  4. 4.
    Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), pp. 982–988. IEEE (2015)Google Scholar
  5. 5.
    Vacek, S., Gindele, T., Zöllner, J.M., Dillmann, R.: Using case-based reasoning for autonomous vehicle guidance. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 4271–4276. IEEE (2007)Google Scholar
  6. 6.
    Hülsen, M., Zöllner, J.M., Weiss, C.: Traffic intersection situation description ontology for advanced driver assistance. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 993–999. IEEE (2011)Google Scholar
  7. 7.
    Geyer, S., Hakuli, S., Winner, H., Franz, B., Kauer, M.: Development of a cooperative system behavior for a highly automated vehicle guidance concept based on the conduct-by-wire principle. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 411–416. IEEE (2011)Google Scholar
  8. 8.
    Schreiber, M., Kauer, M., Schlesinger, D., Hakuli, S., and Bruder, R.: Verification of a maneuver catalog for a maneuver-based vehicle guidance system. In: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), pp. 3683–3689. IEEE (2010)Google Scholar
  9. 9.
    Alonso, J., Milanés, V., Pérez, J., Onieva, E., González, C., De Pedro, T.: Autonomous vehicle control systems for safe crossroads. Transp. Re. Part C: Emerg. Technol. 19(6), 1095–1110 (2011)CrossRefGoogle Scholar
  10. 10.
    Lotz, F., Winner, H.: Maneuver delegation and planning for automated vehicles at multi-lane road intersections. In: 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), pp. 1423–1429. IEEE (2014)Google Scholar
  11. 11.
    United Nations Economic Commission for Europe, U. N. E. C: Convention on Road Signs and Signals of 1968, Switzerland, Geneva (2006)Google Scholar
  12. 12.
    Forschungsgesellschaft für Straßen und Verkehrswesen (FGSV): Richtlinien für Lichtsignalanlagen (RiLSA) (2010)Google Scholar
  13. 13.
    Gerstenberger, M. (2015). Unfallgeschehen an Knotenpunkten: Grundlagenuntersuchung zu Ursachen und Ansätzen zur Verbesserung durch Assistenz. Ph.D. thesis, München, Technische Universität München, Dissertation (2015)Google Scholar
  14. 14.
    Fastenmeier, W., et al.: Autofahrer und Verkehrssituation. Neue Wege zur Bewertung von Sicherheit und Zuverlässigkeit moderner Strassenverkehrssysteme, Number 33 (1995)Google Scholar
  15. 15.
    Lopez, D.P., Waldmann, R., Joerdens, C., Rojas, R.: Scenario interpretation based on primary situations for automatic turning at urban intersections. In: Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS, vol. 1, pp. 15–23. INSTICC, ScitePress (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Perdomo Lopez
    • 1
    Email author
  • Rene Waldmann
    • 1
  • Christian Joerdens
    • 1
  • Raul Rojas
    • 2
  1. 1.Automated Driving, Volkswagen Group ResearchWolfsburgGermany
  2. 2.Department of Mathematics and Computer ScienceFreie Universität BerlinBerlinGermany

Personalised recommendations