Advertisement

Using Energy Supply Scenarios in an Interdisciplinary Research Process

  • Barbara S. ZaunbrecherEmail author
  • Thomas Bexten
  • Jan Martin Specht
  • Manfred Wirsum
  • Reinhard Madlener
  • Martina Ziefle
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 921)

Abstract

The sustainable energy transition (Energiewende) is a multidisciplinary challenge. While for technical disciplines, the focus is on the development of technologies which can supply, transmit and store energy in a sustainable way, economic research focuses for example on the analyses of costs and risks of different asset portfolios. Yet another perspective is taken by the social sciences who focus on social challenges associated with the implementation of measures for realizing the Energiewende (decarbonization, high energy efficiency, high shares of renewables, nuclear phaseout), for example their acceptability. A solution for energy supply and storage which is optimized only according to one of these perspectives will, however, fail to meet other essential criteria. To develop sustainable solutions for energy supply and storage, which are technically feasible, cost-effective, and supported by local residents, interdisciplinary cooperation of researchers is thus needed. Interdisciplinary research, however, is subject to many barriers, for example the need to agree on a common analytical framework. In this paper, a process model for interdisciplinary energy research is proposed, in which specific scenarios are used to aid interdisciplinary cooperation and reciprocal integration of results. Based on a current research project, the phases of the model and the use of the scenarios in disciplinary and interdisciplinary work packages are described, as well as challenges and shortcomings of the model.

Keywords

Renewable energy Social acceptance Economics Technology Interdisciplinarity Electricity storage 

Notes

Acknowledgements

A previous version of this paper was presented at the 7th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS) (Zaunbrecher et al. [53]). Special thanks go to the KESS project members for the fruitful discussions which have contributed and led to this paper. Thanks also to Dr. Klaus Baier, Julian Halbey, Iana Gorokhova and Saskia Ziegler for research support. The “KESS” project conducted at RWTH Aachen University is funded by the strategic funds of the Excellence Initiative of the German federal and state governments.

References

  1. 1.
    Aboelela, S.W., et al.: Defining interdisciplinary research: conclusions from a critical review of the literature. Health Serv. Res. 42(1), 329–346 (2007)CrossRefGoogle Scholar
  2. 2.
    Armstrong, A., Jackson-Smith, D.: Forms and levels of integration: evaluation of an interdisciplinary team-building project. J. Res. Pract. 9(1), 1–20 (2013)Google Scholar
  3. 3.
    Baxter, J., Morzaria, R., Hirsch, R.: A case-control study of support/opposition to wind turbines: perceptions of health risk, economic benefits, and community conflict. Energy Policy 61, 931–943 (2013)CrossRefGoogle Scholar
  4. 4.
    Bexten, T., et al.: Modellbasierte Analyse der Auslegung und des Betriebs kommunaler Energieversorgungssysteme [Model-based analysis of the design and operation of municipal energy supply systems]. In: 14th Symposion für Energieinnovation, EnInnov 2016, Graz, Austria, 10–12 February 2016 (2016)Google Scholar
  5. 5.
    Bexten, T., et al.: Einfluss betrieblicher Flexibilitätsparameter einer Gasturbine auf Auslegung und Betrieb eines dezentralen Energiever- sorgungssystems [Influence of flexibility parameters of a gasturbine on design and operation fo a municipal energy supply system]. In: Kraftwerkstechnik 2016: Strategien, Anlagentechnik und Betrieb, Saxonia, pp. 541–552 (2016)Google Scholar
  6. 6.
    Bexten, T., et al.: Impact of dispatchable energy conversion and storage units on the electrical autarky of future municipal energy supply systems. In: Proceedings of the International Renewable Energy Storage Conference, IRES, Düsseldorf, Germany (2017)Google Scholar
  7. 7.
    Bexten, T., et al.: Techno-economic study of wind farm forecast error compensation by flexible heat-driven CHP units. In: Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition GT2017, GT 2017-63555, Charlotte, NC, USA, 26–30 June 2017 (2017)Google Scholar
  8. 8.
    Boddington, A., Kermik, J., Ainsworth, T.: Interdisciplinary design in the college of arts and humanities at the university of Brighton. In: Banerjee, B., Ceri, S. (eds.) Creating Innovation Leaders. UI, pp. 239–254. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-20520-5_15CrossRefGoogle Scholar
  9. 9.
    Bouffard, F., Ortega-Vasquez, M.: The value of operational flexibility in power systems with significant wind power generation. In: Power and Energy Society General Meeting. IEEE (2001)Google Scholar
  10. 10.
    Brewer, G.D.: The challenges of interdisciplinarity. Policy Sci. 32(4), 327–337 (1999)CrossRefGoogle Scholar
  11. 11.
    Bronfman, N.C., Jiménez, R.B., Arévalo, P.C., Cifuentes, L.A.: Understanding social acceptance of electricity generation sources. Energy Policy 46, 246–252 (2012)CrossRefGoogle Scholar
  12. 12.
    Cavallaro, F., Ciraolo, L.: A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy 33(2), 235–244 (2005)CrossRefGoogle Scholar
  13. 13.
    Cummings, J.N., Kiesler, S.: Collaborative research across disciplinary and organizational boundaries. Soc. Stud. Sci. 35(5), 703–722 (2005)CrossRefGoogle Scholar
  14. 14.
    Cummings, J.N., Kiesler, S.: Who collaborates successfully?: prior experience reduces collaboration barriers in distributed interdisciplinary research. In: Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work, pp. 437–446. ACM (2008)Google Scholar
  15. 15.
    Federal Ministry for Economic Affairs and Energy (BMWi): State Secretary Baake: “Citizens’ energy” wins first onshore wind auction, 19 May 2017. https://www.bmwi.de/Redaktion/EN/Pressemitteilungen/2017/20170519-staatssekretaer-baake-buergerernergie-gro%C3%9Fe-gewinner-der-ersten-ausschreibungsrunde-wind-an-land.html. Accessed 10 July 2017
  16. 16.
    Devine-Wright, P., Batel, S.: Explaining public preferences for high voltage pylon designs: an empirical study of perceived fit in a rural landscape. Land Use Policy 31, 640–649 (2013)CrossRefGoogle Scholar
  17. 17.
    Drezek, K.M., Olsen, D., Borrego, M.: Crossing disciplinary borders: a new approach to preparing students for interdisciplinary research. In: Proceedings of the 38th ASEE/IEEE Frontiers in Education Conference, pp. F4F1–F4F6. IEEE (2008)Google Scholar
  18. 18.
    Gamboa, G., Munda, G.: The problem of windfarm location: a social multi-criteria evaluation framework. Energy Policy 35(3), 1564–1583 (2007)CrossRefGoogle Scholar
  19. 19.
    Grêt-Regamey, A., Celio, E., Klein, T.M., Hayek, U.W.: Understanding ecosystem services trade-offs with interactive procedural modeling for sustainable urban planning. Landsc. Urban Plan. 109(1), 107–116 (2013)CrossRefGoogle Scholar
  20. 20.
    Gross, C.: Community perspectives of wind energy in Australia: the application of a justice and community fairness framework to increase social acceptance. Energy Policy 35(5), 2727–2736 (2007)CrossRefGoogle Scholar
  21. 21.
    Hamann, T., Schaar, A.K., Calero Valdez, A., Ziefle, M.: Strategic knowledge management for interdisciplinary teams - overcoming barriers of interdisciplinary work via an online portal approach. In: Yamamoto, S. (ed.) HIMI 2016. LNCS, vol. 9735, pp. 402–413. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40397-7_38CrossRefGoogle Scholar
  22. 22.
    Hirsh, R.F., Sovacool, B.K.: Wind turbines and invisible technology: unarticulated reasons for local opposition to wind energy. Technol. Cult. 54(4), 705–734 (2013)CrossRefGoogle Scholar
  23. 23.
    Holbrook, J.B.: What is interdisciplinary communication? Reflections on the very idea of disciplinary integration. Synthese 190(11), 1865–1879 (2013)CrossRefGoogle Scholar
  24. 24.
    Holttinen, H.: Impact of hourly wind power variations on the system operation in the Nordic countries. Wind Energy 8(2), 197–218 (2005)CrossRefGoogle Scholar
  25. 25.
    Huijts, N.M., Molin, E.J., Steg, L.: Psychological factors influencing sustainable energy technology acceptance: a review-based comprehensive framework. Renew. Sustain. Energy Rev. 16(1), 525–531 (2012)CrossRefGoogle Scholar
  26. 26.
    Jacobs, J.A., Frickel, S.: Interdisciplinarity: a critical assessment. Annu. Rev. Sociol. 35, 43–65 (2009)CrossRefGoogle Scholar
  27. 27.
    Johansson, M., Laike, T.: Intention to respond to local wind turbines: the role of attitudes and visual perception. Wind Energy 10(5), 435–451 (2007)CrossRefGoogle Scholar
  28. 28.
    Jungert, M.: Was zwischen wem und warum eigentlich? Grundsätzliche Fragen der Interdisziplinarität [What between whom and why? General questions of interdisciplinarity]. In: Interdisziplinarität, Theorie, Praxis, Probleme, pp. 1–12. Wissenschaftliche Buchgesellschaft, Bamberg (2011)Google Scholar
  29. 29.
    Krewitt, W., Nitsch, J.: The potential for electricity generation from on-shore wind energy under the constraints of nature conservation: a case study for two regions in Germany. Renew. Energy 28(10), 1645–1655 (2003)CrossRefGoogle Scholar
  30. 30.
    Krohn, W.: Interdisciplinary cases and disciplinary knowledge. In: The Oxford Handbook of Interdisciplinarity, pp. 31–49. Oxford University Press (2010)Google Scholar
  31. 31.
    Krueger, A.: Focus Groups: A Practical Guide for Applied Research. Sage, Thousand Oaks/London/New Delhi (1994)Google Scholar
  32. 32.
    Langer, K., Decker, T., Menrad, K.: Public participation in wind energy projects located in Germany: which form of participation is the key to acceptance? Renew. Energy 112, 63–73 (2017)CrossRefGoogle Scholar
  33. 33.
    Lattuca, L.R.: Learning interdisciplinarity: socio-cultural perspectives on academic work. J. High. Educ. 73(6), 711–739 (2002)Google Scholar
  34. 34.
    Lélé, S., Norgaard, R.B.: Practicing interdisciplinarity. BioScience 55(11), 967–975 (2005)CrossRefGoogle Scholar
  35. 35.
    Liebe, U., Bartczak, A., Meyerhoff, J.: A turbine is not only a turbine: the role of social context and fairness characteristics for the local acceptance of wind power. Energy Policy 107, 300–308 (2017)CrossRefGoogle Scholar
  36. 36.
    Luce, R.D., Tukey, J.W.: Simultaneous conjoint measurement: a new type of fundamental measurement. J. Math. Psychol. 1(1), 1–27 (1964)CrossRefGoogle Scholar
  37. 37.
    Madlener, R.: Portfolio optimization of power generation assets. In: Zheng, Q., Rebennack, S., Pardalos, P., Pereira, M., Iliadis, N. (eds.) Handbook of CO\(_{2}\) in Power Systems. ENERGY, pp. 275–296. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27431-2_12CrossRefGoogle Scholar
  38. 38.
    Marg, S., Hermann, C., Hambauer, V., Becke, A.B.: Wenn man was für die Natur machen will, stellt man da keine Masten hin [If you want to help nature, you don’t build pylons in it]. In: Die neue Macht der Bürger: Was motiviert die Protestbewegungen? BP-Gesellschaftsstudie, pp. 94–138. Rowohlt (2013)Google Scholar
  39. 39.
    McNair, B.J., Bennett, J., Hensher, D.A., Rose, J.M.: Households’ willingness to pay for overhead-to-underground conversion of electricity distribution networks. Energy Policy 39(5), 2560–2567 (2011)CrossRefGoogle Scholar
  40. 40.
    Raven, R.P., Mourik, R.M., Feenstra, C.F.J., Heiskanen, E.: Modulating societal acceptance in new energy projects: towards a toolkit methodology for project managers. Energy 34(5), 564–574 (2009)CrossRefGoogle Scholar
  41. 41.
    Rhoten, D., Pfirman, S.: Women in interdisciplinary science: exploring preferences and consequences. Res. Policy 36(1), 56–75 (2007)CrossRefGoogle Scholar
  42. 42.
    Schweizer, P.J., et al.: Public participation for infrastructure planning in the context of the German “Energiewende”. Util. Policy 43, 206–209 (2016)CrossRefGoogle Scholar
  43. 43.
    Songsore, E., Buzzelli, M.: Social responses to wind energy development in Ontario: the influence of health risk perceptions and associated concerns. Energy Policy 69, 285–296 (2014)CrossRefGoogle Scholar
  44. 44.
    Wiedemann, P.M., Boerner, F., Claus, F.: How far is how far enough? Safety perception and acceptance of extra-high-voltage power lines in Germany. J. Risk Res. 21(4), 463–479 (2018)CrossRefGoogle Scholar
  45. 45.
    Wilson, G.: The world has problems while universities have disciplines: universities meeting the challenge of environment through interdisciplinary partnerships. J. World Univ. Forum 2(2), 57–62 (2009)Google Scholar
  46. 46.
    Wolsink, M.: Wind power implementation: the nature of public attitudes: equity and fairness instead of ‘backyard motives’. Renew. Sustain. Energy Rev. 11(6), 1188–1207 (2007)CrossRefGoogle Scholar
  47. 47.
    Wüstenhagen, R., Wolsink, M., Bürer, M.J.: Social acceptance of renewable energy innovation: an introduction to the concept. Energy Policy 35(5), 2683–2691 (2007)CrossRefGoogle Scholar
  48. 48.
    Zaunbrecher, B.S., Ziefle, M.: Integrating acceptance-relevant factors into wind power planning: a discussion. Sustain. Cities Soc. 27, 307–314 (2016)CrossRefGoogle Scholar
  49. 49.
    Zaunbrecher, B., Arning, K., Falke, T., Ziefle, M.: No pipes in my backyard? Preferences for local district heating network design in Germany. Energy Res. Soc. Sci. 14, 90–101 (2016).  https://doi.org/10.1016/j.erss.2016.01.008CrossRefGoogle Scholar
  50. 50.
    Zaunbrecher, B.S., Bexten, T., Wirsum, M., Ziefle, M.: What is stored, why, and how? Mental models, knowledge, and public acceptance of hydrogen storage. Energy Proc. 99, 108–119 (2016)CrossRefGoogle Scholar
  51. 51.
    Zaunbrecher, B., Linzenich, A., Ziefle, M.: A mast is a mast is a mast...? Comparison of preferences for location-scenarios of electricity pylons and wind power plants using conjoint analysis. Energy Policy 105, 429–439 (2017).  https://doi.org/10.1016/j.enpol.2017.02.043CrossRefGoogle Scholar
  52. 52.
    Zaunbrecher, B.S., Linzenich, A., Ziefle, M.: Experts and laypeople’s evaluation of electricity storage facilities: implications for communication strategies. In: Proceedings of the International Renewable Energy Storage Conference, IRES, Düsseldorf, Germany (2017)Google Scholar
  53. 53.
    Zaunbrecher, B., Bexten, T., Specht, J.M., Wirsum, M., Madlener, R., Ziefle, M.: Using scenarios for interdisciplinary energy research. A process model. In: 6th International Conference on Smart Cities and Green ICT Systems, Smartgreens 2017, pp. 293–298. SCITEPRESS - Science and Technology Publications (2017).  https://doi.org/10.5220/0006355702930298
  54. 54.
    Zoellner, J., Schweizer-Ries, P., Wemheuer, C.: Public acceptance of renewable energies: results from case studies in Germany. Energy Policy 36(11), 4136–4141 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Barbara S. Zaunbrecher
    • 1
    Email author
  • Thomas Bexten
    • 2
  • Jan Martin Specht
    • 3
  • Manfred Wirsum
    • 2
  • Reinhard Madlener
    • 3
  • Martina Ziefle
    • 1
  1. 1.Chair for Communication ScienceRWTH Aachen UniversityAachenGermany
  2. 2.Chair and Institute of Power Plant Technology, Steam and Gas TurbinesRWTH Aachen UniversityAachenGermany
  3. 3.Chair of Energy Economics and Management, Institute for Future Energy Consumer Needs and Behavior (FCN), E.ON Energy Research CenterRWTH Aachen UniversityAachenGermany

Personalised recommendations